悬浮斩波器的自抗扰电流跟随控制研究OA北大核心
Research on Active Disturbance Rejection Current Following Control of Suspension Chopper
随着磁浮列车的高速发展,其悬浮系统对电流环响应速度与精度的要求日渐提高,为此提出将自抗扰控制ADRC(active disturbance rejection control)技术用于悬浮斩波器的控制中.首先阐述磁浮列车悬浮系统与斩波器的数学模型;然后介绍自抗扰控制器的基本结构与工作原理,并设计悬浮斩波器中自抗扰电流跟随模型;最后通过改变斩波器模型的参数和施加外部扰动进行系统仿真,并与传统比例积分PI(proportional-integral)控制进行对比.结果表明,自抗扰控制对悬浮斩波器具有良好的电流跟随效果,对外部扰动及对象模型参数的变化具有良好的抗干扰性和鲁棒性,且自抗扰控制算法降低了数学模型的依赖性,为悬浮斩波器的控制提供了优化方案.
With the high-speed development of magnetic levitation trains,the requirements of their levitation system for the current loop response speed and accuracy keep increasing.In this paper,the active disturbance rejection control ( ADRC ) technology is applied in the control of a suspension chopper.First,the mathematical models of a levitation system of magnetic levitation train and a suspension chopper are elaborated upon.Then,the basic structure and working principle of an ADRC controller are introduced,and an ADRC current following model in the suspension chopper is designed.Finally,the system is simulated by changing the parameters of the suspension chopper model and applying external disturbances,and a comparison with the traditional proportional-integral ( PI ) control is performed.Results show that ADRC has a good current following effect on the suspension chopper,as well as good anti-disturbance and robustness to external disturbances and changes in the object model parameters.In addition,the ADRC algorithm reduces the dependence on mathematical models,providing an optimized solution for the control of the suspension chopper.
陈高琪;张昆仑;张慧娴;娄方良
西南交通大学电气工程学院,成都 611756||西南交通大学磁浮技术与磁浮列车教育部 重点实验室,成都 611756
动力与电气工程
自抗扰控制悬浮斩波器电流跟随鲁棒性
Active disturbance rejection control ( ADRC )suspension choppercurrent followingrobustness
《电源学报》 2024 (0z1)
42-49 / 8
评论