基于深度学习的河道非恒定流糙率反演方法OA北大核心CSTPCD
Roughness inversion method for river unsteady flow simulations based on deep learning
糙率是反映水流阻力影响的一个综合性系数,直接影响一维非恒定流的模拟精度.以往糙率反演研究很少考虑其随流量或水位的变化.为此,本文将糙率视为流量的分段线性函数,提出一种基于长短期记忆神经网络的河道非恒定流糙率反演方法,以数据驱动方式实现对糙率的直接反演;并针对天然长河段计算断面多、流量变化范围大的特点,提出一种基于逐次逼近的分步反演策略来降低反演求解维度.以向家坝库区河道为例进行数值检验,结果表明:利用不同流量级下的糙率反演值进行一维非恒定流计算,得到的沿程水位变化过程与实测资料较为吻合,且计算精度明显高于不考虑糙率随流量变化的结果.该结果验证了方法的有效性,为天然长河道糙率反演提供了新途径.
Manning's roughness coefficient,as a comprehensive indicator of flow resistance,significantly affects the accuracy of one-dimensional unsteady flow simulations.Previous studies based on roughness inversion lack consideration of the roughness that varies with the discharge or water level.This paper develops a roughness inversion method for river unsteady flow simulations based on the long short-term memory neural network,through treating roughness as a continuous piecewise linear function of discharge,so as to realize the direct inversion of roughness using a data-driven method.We also develop a successive approximation based on a stepwise inversion strategy to reduce the dimension of inversion solutions,a useful technique for long natural rivers that feature a great number of cross sections and a large discharge variation range.This inversion method is evaluated through a case study of the reaches of the Xiangjiaba Reservoir,China.The results show that by using the roughness values inverted from the observed data under different discharge grades,its calculations of the water stage hydrographs are in good agreement with measurements,and its accuracy is significantly higher than the methods without considering roughness variations with discharge.The results verify the effectiveness of our new method that provides a novel approach to the roughness inversion of flows in long rivers.
李成业;彭杨;罗诗琦;于显亮;姚礼双
华北电力大学 水利与水电工程学院,北京 102206
水利科学
长短期记忆神经网络分步反演策略天然河道糙率反演一维非恒定流
long short-term memory neural networkstepwise inversion strategynatural riverroughness inversionone-dimensional unsteady flow
《水力发电学报》 2024 (010)
42-52 / 11
国家重点研发计划资助项目(2023YFC3209501)
评论