寒冷条件下高拱坝施工过程仿真方法研究OA北大核心CSTPCD
Research on simulation method of high arch dam construction process under cold conditions
众多高拱坝施工面临着恶劣寒冷气候的考验.然而,现有的高拱坝施工过程仿真方法较少直接考虑气温对施工的影响,且未考虑基于气温预测成果进行动态分块,以分析寒冷条件下利用正温时段进行浇筑的特点.针对以上问题,本文提出了基于Informer的寒冷条件下高拱坝施工过程仿真方法.首先,提出基于Informer气温预测模型,实现未来气温序列的预测,在此基础上实现可施工时段分析;其次,建立考虑动态分块的寒冷条件下高拱坝施工进度仿真模型,提出更加贴近实际施工情况的分块施工仿真策略,以更好地模拟和分析不同气温条件下的施工过程;最后,以西南地区的叶巴滩高拱坝工程为例进行研究,采用 Informer 模型对气温进行预测,平均误差为±1.49℃,每日的可施工时长平均误差为±1.16 h.通过对比三种不同的仿真策略,发现寒冷条件下采用动态分块策略可以充分利用可浇筑时段,施工效率更高,也表明在仿真中"考虑气温"比简单降效处理更加贴近实际情况.
Construction of many high arch dams is faced with harsh cold weather conditions.However,few previous methods for the simulation directly consider the impact of temperature on construction or the dynamic warehousing based on temperature predictions for utilizing fully the unfreezing temperature period for concrete pouring in the cold season.This paper presents a new method for simulating the construction process of high arch dams under cold conditions based on Informer.First,we establish a temperature prediction model based on Informer to predict future temperature sequences,and apply it to construction analysis.Then,we develop a dynamic partition construction model for constructing a high arch dam under cold conditions,and implement a partition construction simulation strategy applicable in real construction environment,so as to improve the construction simulation and analysis for different temperature conditions.Finally,the Informer model is used to predict temperature in a case study of the Yebatan high arch dam project located in the southwest region,generating an average error of±1.49℃and a daily average error of±1.16 hours of construction time.We compare three different simulation strategies and verify that the dynamic partition strategy is more efficient under cold conditions,demonstrating temperature factor consideration gives improved simulations that are closer to reality than the method of simply reducing efficiency.
关涛;肖一峰;任炳昱;于浩
天津大学 水利工程智能建设与运维全国重点实验室,天津 300072
水利科学
寒冷条件高拱坝Informer气温预测动态分块
cold weather conditionhigh arch damInformertemperature predictiondynamic partition model
《水力发电学报》 2024 (010)
85-96 / 12
国家自然科学基金(52379131;52222907)
评论