| 注册
首页|期刊导航|水力发电学报|特高拱坝变形机理可解释性智能预测模型

特高拱坝变形机理可解释性智能预测模型

马春辉 余飞 程琳 杨杰

水力发电学报2024,Vol.43Issue(10):107-120,14.
水力发电学报2024,Vol.43Issue(10):107-120,14.DOI:10.11660/slfdxb.20241010

特高拱坝变形机理可解释性智能预测模型

Explanatory intelligent prediction model for deformation mechanism of super-high arch dam

马春辉 1余飞 1程琳 1杨杰1

作者信息

  • 1. 西安理工大学 省部共建西北旱区生态水利国家重点实验室,西安 710048||西安理工大学 水利水电学院,西安 710048
  • 折叠

摘要

Abstract

Aimed at the limitation of the traditional intelligent black box model that cannot explain the deformation mechanism of arch dams,we apply the Shapley Additive Explanation(SHAP)theory and deconstruct a machine learning deformation prediction model for a super high arch dam,focusing on analysis of the influence of water pressure,temperature and aging on the radial horizontal displacement of its different parts.From the deformation monitoring data of the dam,we construct a Light Gradient Boosting Machine(LightGBM)black box prediction model that uses SHAP to eliminate the factors with multicollinearity,and analyze the contribution of different influencing factors to model deformation prediction for the whole factor set and a single sample.In a case study of the dam abutment of a super high arch,we examine the relationship of the influencing factors versus its radial horizontal displacements at dam foundation,arch crown,and other dam parts.We find the aging factor has a greater influence on the displacements at the higher elevations close to the arch crown.The temperature factor mainly affects the displacements near the arch crown,and the water pressure factor mainly affects those at higher elevations;while neither of both factors has a considerable effect on the displacements at the measuring points in the dam foundation and the rock mass deep into the abutment.Our method overcomes the shortcoming of poor visibility and unclear internal mechanism of the previous intelligent'black box'deformation prediction model.Thus,this interpretable model yields the relevant laws that help working performance analysis and operation management of super high arch dams.

关键词

水利工程/特高拱坝/监控模型/SHAP可解释性/LightGBM算法/变形预测

Key words

Hydro-engineering/super-high arch dams/monitoring models/SHAP interpretability/LightGBM algorithm/deformation prediction

分类

水利科学

引用本文复制引用

马春辉,余飞,程琳,杨杰..特高拱坝变形机理可解释性智能预测模型[J].水力发电学报,2024,43(10):107-120,14.

基金项目

国家自然科学基金(52279140) (52279140)

陕西省自然科学基础研究计划一般项目(2023-JC-QN-0562) (2023-JC-QN-0562)

水力发电学报

OA北大核心CSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文