基于集成时变矩模型和动态蒙特卡洛方法的防洪风险分析OA北大核心CSTPCD
Flood control risk analysis based on Integrated Time-Varying Moment model and Dynamic Monte Carlo method
与作为水利水电工程设计依据的历史水文情势相比,未来受到全球气候变化影响的水文情势将与之产生偏差,进而导致流域内各水电工程水文分析成果的改变.这些成果的改变又将对流域梯级水库群中长期的运行安全和防洪调度产生影响.本文以雅砻江流域为研究区域,通过耦合SWAT水文模型和全球气候模式,定量识别未来气候变化条件下的流域气象水文要素变化情况,在此基础上提出能同时考虑非一致性和历史特大洪水的集成时变矩模型方法,最后选取流域内杨房沟水电站,基于动态蒙特卡洛方法进行未来气候变化条件下的调洪演算.主要结果如下:率定好的SWAT模型模拟精度较高,且在雅砻江流域有较好的空间适用性.在未来气候变化条件下,麦地龙站洪峰流量序列在SSP1-2.6情景下,从现在到2070年左右小幅上升,随后小幅下降;在SSP2-4.5情景下,从现在到2070年左右明显上升,然后趋于稳定;仅在SSP5-8.5情景下持续上升,且上升趋势非常明显.在未来气候变化条件下,除SSP1-2.6情景的超校核洪水位风险率外,其他情景下杨房沟水电站超设计洪水位、校核洪水位风险率较设计标准均明显增大.未来全球气候变化将对雅砻江流域水循环和陆气水分交换产生显著影响,导致水文极端事件更加突出,流域内基于稳定环境下水文情势及水文分析成果规划建设的水电站(水库)将面临更大的防洪风险.本文提出的融合集成时变矩和动态蒙特卡洛模型的防洪风险分析方法,在考虑未来全球气候变化导致的非一致性基础上同时融入了历史特大洪水信息,经验证适用性较好.研究成果可为相关运行管理部门应对相应风险和指导实际生产提供一定参考.
Compared with the historical hydrological situation that serves as the basis for the design of water conser-vancy and hydropower projects,the situation affected by global climate change in future will deviate from it.This will lead to changes of hydrological analysis results of runoff and design floods.As a result,the changes will affect the long-term operation safety and flood control of cascade reservoirs in the basin.This study takes the Yalong Riv-er basin as the research area,and quantitatively identifies the changes in meteorological and hydrological elements of the basin under future climate change conditions through coupling the SWAT hydrological model and global cli-mate model.Based on this,an Integrated Time-Varying Moment(ITVM)model that can consider non-stationarity and historical extraordinary floods(HEFs)information jointly is proposed to carry out the non-stationary frequency analysis.Finally,the flood control risk assessment of the Yangfanggou hydropower station un-der future climate change conditions is conducted based on the Dynamic Monte Carlo(DMC)method.The main re-sults are as follows:the calibrated SWAT model has high simulation accuracy and good spatial applicability in the Yalong River Basin.Under the future climate change conditions,the peak flow series of Maidilong station increases slightly from now to around 2070 under the SSP 1-2.6 scenario,followed by a slight decrease;Under the SSP2-4.5 scenario,it increases from now to around 2070 significantly,and then tends to stabilize;Only in the SSP5-8.5 scenario it continues to rise,and the upward trend is obvious.Under future climate change conditions,except for the risk of exceeding the design flood level under the SSP 1-2.6 scenario,the risk of exceeding the design flood level and check flood level of Yangfanggou Hydropower Station have significantly increased compared to the design standards.Future global climate change will have a significant impact on the water cycle and land-air water ex-change in the Yalong River basin,leading to more severe hydrological extreme events.The hydropower stations(reservoirs)planned and constructed in the basin based on the hydrological analysis results in stable environment will face greater flood control risks.The flood control risk analysis method integrating the ITVM and DMC model proposed in this article can consider the effects of HEFs and the non-stationarity of flood series caused by future global climate change together,and it has been verified to have good applicability in practice.The results can pro-vide certain references for the relevant management institutions to deal with flood control risks and guide actual pro-duction.
董立俊;董晓华;马耀明;魏冲;喻丹;苏中波
三峡大学水利与环境学院,湖北宜昌 443002||三峡库区生态环境教育部工程研究中心,湖北宜昌 430002中国科学院青藏高原研究所青藏高原地球系统与资源环境重点实验室地气作用与气候效应团队,北京 100101||中国科学院大学地球与行星科学学院,北京 100049||兰州大学大气科学学院,甘肃兰州 730000||西藏珠穆朗玛特殊大气过程与环境变化国家野外科学观测研究站,西藏定日 858200||中国科学院加德满都科教中心,北京 100101||中国科学院中国-巴基斯坦地球科学研究中心,巴基斯坦伊斯兰堡45320特文特大学地球信息科学与地球观测学院,荷兰恩斯赫德7500 AE
地球科学
气候变化非一致性集成时变矩模型防洪风险
climate changenon-stationarityintegrated time-varying moment modelflood control risks
《水利学报》 2024 (009)
1084-1097 / 14
第二次青藏高原综合科学考察研究项目(2019QZKK0103);欧洲空间局、中国国家遥感中心项目(58516);水电工程水文气象重大关键技术应用研究项目(DJ-ZDZX-016-02)
评论