|国家科技期刊平台
首页|期刊导航|应用数学|一类二次矩阵方程的数值方法

一类二次矩阵方程的数值方法OA北大核心CSTPCD

Numerical Methods for a Class of Quadratic Matrix Equations

中文摘要英文摘要

二次矩阵方程广泛出现在科学计算和工程应用的许多领域中.本文研究了一类二次矩阵方程的理论和数值解法.首先在一定条件下证明了该二次矩阵方程最小非负解的存在性,然后提出了求解该方程的一些数值方法.最后通过理论分析和数值算例对本文的理论和数值方法进行了验证.

Quadratic matrix equations arise in many fields of scientific computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we first prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.

关晋瑞;王志欣;邵荣侠

太原师范学院数学与统计学院,山西晋中 030619||太原师范学院智能优化计算与区块链技术山西省重点实验室,山西晋中 030619太原师范学院数学与统计学院,山西晋中 030619新疆财经大学统计与数据科学学院,新疆乌鲁木齐 830012

数学

二次矩阵方程M-矩阵最小非负解牛顿法伯努利法

Quadratic matrix equationM-matrixMinimal nonnegative solutionNewton methodBernoulli method

《应用数学》 2024 (004)

962-970 / 9

Supported by the National Natural Science Foundation of China(12001395),the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018),Research Project Supported by Shanxi Scholarship Council of China(2022-169),and Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)

评论