首页|期刊导航|云南民族大学学报(自然科学版)|融合课程学习的TD3在上证50ETF期权上的动态对冲研究

融合课程学习的TD3在上证50ETF期权上的动态对冲研究OACSTPCD

Dynamic hedging of SSE 50ETF options based on deep reinforcement learning TD3 fusing curriculum learning

中文摘要英文摘要

如何进行动态对冲来管理头寸风险在期权交易中极为关键,然而在实际市场环境中并没有一个完美对冲的标准答案,因此寻求更好的对冲策略一直是投资领域的热门需求和研究的焦点.采用深度强化学习算法TD3,并结合课程学习的思想引导智能体采用从模拟到真实的学习方式实现动态对冲任务,降低学习难度并缓解期权数据不足的问题,构建了在上证 50ETF期权上的动态对冲策略.结果表明深度强化学习算法的对冲效果远超传统对冲策略,验证了强化学习算法在期权对冲领域的有效性和优势.

How to conduct dynamic hedging to manage position risk is extremely crucial in option trading,but there is no standard answer for perfect hedging in the actual market environment.Therefore,seeking better hedging strat-egies has always been a hot demand and research focus in the investment field.Using the deep reinforcement learn-ing algorithm TD3 and the concept of curriculum learning,a dynamic hedging strategy for the Shanghai Stock Ex-change 50 ETF options has been developed.This strategy guides the agent from simulation to real-world learning to achieve dynamic hedging tasks,reducing learning difficulty and alleviating the issue of insufficient option data.The results showed that the hedging effect of the deep reinforcement learning algorithm far exceeded that of tradi-tional hedging strategies,verifying the effectiveness and advantages of the reinforcement learning algorithm in the field of option hedging.

谷文君;钱成;刘磊

河海大学 数学学院,江苏 南京 211100东南大学 数学学院,江苏 南京 211189

计算机与自动化

强化学习TD3课程学习期权Delta对冲

reinforcement learningTD3curriculum learningoptiondelta hedging

《云南民族大学学报(自然科学版)》 2024 (005)

607-615 / 9

教育部人文社会科学研究规划基金(23YJAZH031).

10.3969/j.issn.1672-8513.2024.05.010

评论