基于退火优化粒子群算法的负荷辨识方法OACSTPCD
Load identification method based on annealing optimization particle swarm optimization algorithm
在粒子群算法对非侵入式负荷辨识的研究中,粒子的随机性是影响负荷辨识的重要因素之一.针对粒子随机性导致的辨识结果准确度不高及容易陷入局部最优陷阱等问题,结合模拟退火算法,提出了一种基于退火优化粒子群算法的非侵入式负荷辨识方法.首先,对用于电力负载分析的REDD数据集中的家用电器负荷数据进行特征分析提取;然后,利用粒子群算法作为模拟退火算法的基本框架,对数据集中各自家庭的不同电器进行负荷辨识;最后,以辨识功率与实际功率为标准量进行误差分析.在以数学模型进行求解的单一目标及多目标负荷辨识问题中,对现有模型不同类别算法的辨识结果进行比较,结果表明提出的优化粒子群算法辨识准确度较高及收敛性更好.
In the research of non intrusive load identification based on particle swarm optimization,the randomness of particles is one of the important factors affecting load identification.To solve the problems of low accuracy of i-dentification results caused by particle randomness and easy to fall into local optimal traps,this paper proposes a non-intrusive load identification method based on annealing optimization particle swarm optimization algorithm com-bined with simulated annealing algorithm.Firstly,the characteristics of the household appliance load data in the REDD dataset for power load analysis are extracted;Then,using particle swarm optimization algorithm as the basic framework of simulated annealing algorithm,load identification is carried out for different appliances in each house-hold in the dataset;Finally,the error analysis is carried out with the identified power and the actual power as the standard quantities.In the single objective and multi-objective load identification problems solved by mathemati-cal models,the identification results of different types of algorithms of existing models are compared,and the results show that the proposed optimal particle swarm optimization algorithm has higher identification accuracy and better convergence.
莫杰;徐天奇;李琰;朱全聪
云南民族大学 云南省高校电力信息物理融合系统重点实验室,云南 昆明 650504云南电网有限责任公司电力科学研究院,云南 昆明 650214
动力与电气工程
模拟退火算法粒子群算法非侵入式负荷辨识
simulated annealing algorithmparticle swarm optimizationnon-intrusive load identification
《云南民族大学学报(自然科学版)》 2024 (005)
630-637,660 / 9
国家自然科学基金(62062068).
评论