改进RRT^(*)-APF-DP融合算法的机械臂路径规划OA北大核心CSTPCD
针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.
吴飞;沈大伟;
武汉理工大学机电工程学院,湖北武汉430070
计算机与自动化
路径规划机械臂改进RRT^(*)算法路径优化改进人工势场法Douglas-Peucker算法
《福州大学学报(自然科学版)》 2024 (005)
P.552-559 / 8
国家自然科学基金面上资助项目(52275505)。
评论