基于自适应位置调节的飞蛾扑火MPPT控制方法OA
为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。
常振成;肖梓跃;张书睿;刘锐君;郗重企;游国栋
天津科技大学电子信息与自动化学院,天津300222天津科技大学电子信息与自动化学院,天津300222天津科技大学电子信息与自动化学院,天津300222天津科技大学电子信息与自动化学院,天津300222天津科技大学电子信息与自动化学院,天津300222天津科技大学电子信息与自动化学院,天津300222
动力与电气工程
光伏阵列最大功率点追踪(MPPT)自适应位置调节飞蛾扑火优化算法局部遮阴
《天津科技大学学报》 2024 (5)
P.49-55,7
天津市重点研发计划项目(17YFZCNC00230)大学生创新创业计划项目(202310057101,202410057167)。
评论