| 注册
首页|期刊导航|电力建设|基于多任务集成学习的储能电池剩余使用寿命预测

基于多任务集成学习的储能电池剩余使用寿命预测

王伟亮 刘会巧 张天宇 阮鹏 徐劲 肖迁

电力建设2024,Vol.45Issue(11):25-33,9.
电力建设2024,Vol.45Issue(11):25-33,9.DOI:10.12204/j.issn.1000-7229.2024.11.003

基于多任务集成学习的储能电池剩余使用寿命预测

Multi-Task Ensemble Learning-Based Prediction of Remaining Useful Life of Energy-Storage Batteries

王伟亮 1刘会巧 2张天宇 3阮鹏 4徐劲 5肖迁6

作者信息

  • 1. 国网江苏省电力有限公司,南京市 210024
  • 2. 天津理工大学中环信息学院,天津市 300380||智能电网教育部重点实验室(天津大学),天津市 300072
  • 3. 国网天津市电力公司经济技术研究院,天津市 300171
  • 4. 平高集团储能科技有限公司,天津市 300300
  • 5. 国网吉林省电力有限公司长春供电公司,长春市 130021
  • 6. 智能电网教育部重点实验室(天津大学),天津市 300072
  • 折叠

摘要

Abstract

Driven by the goal of achieving carbon peak and neutrality,electric vehicles are crucial in the transformation of transportation energy.Thus,the accurate prediction of the remaining useful life(RUL)can be useful in periodic maintenance and reduce the risk of accidents.Therefore,this paper proposes a multi-task ensemble learning-based model for accurately predicting the RUL of lithium-ion batteries under driving conditions.First,an incremental capacity-differential voltage curve is used to quantify the loss of conductivity,active material,and lithium ions.Electrochemical impedance spectroscopy is used to calculate the ohmic,charge transfer,solid electrolyte,and Warburg impedances.Second,based on multi-task learning,the inter-feature correlation is analyzed to ensure full utilization of the features and reduce the experimental cost.Subsequently,based on the light gradient boosting machine improved by adaptive robust loss,an RUL prediction model is constructed,and it improves the prediction accuracy.Experimental data under driving conditions(vibration conditions:reference,X-axis,Y-axis,and Z-axis)were used to verify the effectiveness of the proposed model.The results show that the proposed prediction model can achieve a mean absolute error of less than 1.4%,a mean absolute percentage error of less than 0.06%,and a root mean square error of less than 1.20%.The proposed prediction model can improve RUL prediction accuracy and ensure stable and safe operation of the battery.

关键词

锂离子电池/剩余使用寿命/行驶工况/多任务学习/集成学习

Key words

lithium-ion battery/remaining useful life/driving conditions/multi-task learning/ensemble learning

分类

信息技术与安全科学

引用本文复制引用

王伟亮,刘会巧,张天宇,阮鹏,徐劲,肖迁..基于多任务集成学习的储能电池剩余使用寿命预测[J].电力建设,2024,45(11):25-33,9.

基金项目

国家自然科学基金项目(52107121) (52107121)

天津市自然科学基金多元投入重点项目(22JCZDJC00710) (22JCZDJC00710)

天津市企业科技特派员项目(23YDTPJC00090) (23YDTPJC00090)

天津大学自主创新基金项目(2024XHX-0028) This work is supported by the National Natural Science Foundation of China(No.52107121),Tianjin Natural Science Foundation Diversified Investment Key Program(No.22JCZDJC00710),Tianjin Enterprise Science and Technology Commissioner Project(No.23YDTPJC00090)and Seed Foundation of Tianjin University(No.2024XHX-0028). (2024XHX-0028)

电力建设

OA北大核心CSTPCD

1000-7229

访问量0
|
下载量0
段落导航相关论文