|国家科技期刊平台
首页|期刊导航|电力建设|基于多任务集成学习的储能电池剩余使用寿命预测

基于多任务集成学习的储能电池剩余使用寿命预测OA北大核心CSTPCD

Multi-Task Ensemble Learning-Based Prediction of Remaining Useful Life of Energy-Storage Batteries

中文摘要英文摘要

"双碳"目标驱动下,电动汽车在交通能源转型中发挥关键作用,准确的剩余使用寿命(remaining useful life,RUL)预测可以指导电动汽车电池定期维护和降低事故风险.因此,提出了一个基于多任务集成学习的锂离子电池RUL预测模型,以实现行驶工况下RUL的准确预测.首先,通过增量容量-差值电压曲线,将健康因子量化为电导率损失、活性材料损失和锂离子损失;通过电化学阻抗谱,计算欧姆阻抗、电荷转移阻抗、固体电解质阻抗和Warburg阻抗.其次,基于多任务学习,分析了特征间相关性,保证了对特征的充分利用,降低了实验成本.然后,基于自适应鲁棒损失的改进轻量型梯度提升机,构建RUL预测模型,提高了预测准确率.最后,通过行驶工况下电池实验数据(振动工况:静置、X轴、Y轴和Z轴),验证所提模型有效性.结果表明:所提预测模型能够实现平均绝对误差小于 1.4%、平均绝对百分比误差小于0.06%、均方根误差小于1.20%,所提预测模型有助于提高RUL预测准确率,保证电池稳定、安全运行.

Driven by the goal of achieving carbon peak and neutrality,electric vehicles are crucial in the transformation of transportation energy.Thus,the accurate prediction of the remaining useful life(RUL)can be useful in periodic maintenance and reduce the risk of accidents.Therefore,this paper proposes a multi-task ensemble learning-based model for accurately predicting the RUL of lithium-ion batteries under driving conditions.First,an incremental capacity-differential voltage curve is used to quantify the loss of conductivity,active material,and lithium ions.Electrochemical impedance spectroscopy is used to calculate the ohmic,charge transfer,solid electrolyte,and Warburg impedances.Second,based on multi-task learning,the inter-feature correlation is analyzed to ensure full utilization of the features and reduce the experimental cost.Subsequently,based on the light gradient boosting machine improved by adaptive robust loss,an RUL prediction model is constructed,and it improves the prediction accuracy.Experimental data under driving conditions(vibration conditions:reference,X-axis,Y-axis,and Z-axis)were used to verify the effectiveness of the proposed model.The results show that the proposed prediction model can achieve a mean absolute error of less than 1.4%,a mean absolute percentage error of less than 0.06%,and a root mean square error of less than 1.20%.The proposed prediction model can improve RUL prediction accuracy and ensure stable and safe operation of the battery.

王伟亮;刘会巧;张天宇;阮鹏;徐劲;肖迁

国网江苏省电力有限公司,南京市 210024天津理工大学中环信息学院,天津市 300380||智能电网教育部重点实验室(天津大学),天津市 300072国网天津市电力公司经济技术研究院,天津市 300171平高集团储能科技有限公司,天津市 300300国网吉林省电力有限公司长春供电公司,长春市 130021智能电网教育部重点实验室(天津大学),天津市 300072

动力与电气工程

锂离子电池剩余使用寿命行驶工况多任务学习集成学习

lithium-ion batteryremaining useful lifedriving conditionsmulti-task learningensemble learning

《电力建设》 2024 (011)

25-33 / 9

国家自然科学基金项目(52107121);天津市自然科学基金多元投入重点项目(22JCZDJC00710);天津市企业科技特派员项目(23YDTPJC00090);天津大学自主创新基金项目(2024XHX-0028) This work is supported by the National Natural Science Foundation of China(No.52107121),Tianjin Natural Science Foundation Diversified Investment Key Program(No.22JCZDJC00710),Tianjin Enterprise Science and Technology Commissioner Project(No.23YDTPJC00090)and Seed Foundation of Tianjin University(No.2024XHX-0028).

10.12204/j.issn.1000-7229.2024.11.003

评论