| 注册
首页|期刊导航|信息与控制|融合深度学习与稠密光流的动态视觉SLAM

融合深度学习与稠密光流的动态视觉SLAM

胡青松 任林洋 随学帅 李世银 孙彦景

信息与控制2024,Vol.53Issue(4):499-507,9.
信息与控制2024,Vol.53Issue(4):499-507,9.DOI:10.13976/j.cnki.xk.2024.3198

融合深度学习与稠密光流的动态视觉SLAM

Dynamic Visual SLAM Integrating Deep Learning and Dense Optical Flow

胡青松 1任林洋 1随学帅 1李世银 1孙彦景1

作者信息

  • 1. 中国矿业大学地下空间智能控制教育部工程研究中心,江苏徐州 221116||中国矿业大学信息与控制工程学院,江苏徐州 221116||中国矿业大学徐州市智能安全与应急协同工程研究中心,江苏徐州 221116
  • 折叠

摘要

Abstract

Traditional visual simultaneous localization and mapping(SLAM)algorithms function well when the environmental objects are stationary or moving at low speeds,but their precision and ro-bustness are low when dynamic disturbances such as personnel walking and vehicle moving are present.To address this problem,a dynamic SLAM system is proposed based on the Oriented FAST and Rotated BRIEF-SLAM3(ORB-SLAM3)framework,which integrates the You Only Look At CoefficienTs(YOLACT++)deep learning network with the ORB-SLAM3 framework for detecting dynamic targets.A dense optical flow field is extracted and incorporated with visual ge-ometry to discover the motion attributes.A motion-level transfer strategy that integrates an instance segmentation network and dense optical flow field to achieve joint optimization of SLAM system ef-ficiency and accuracy is proposed.The test results on the public dataset TUM present that the pro-posed system has an outstanding performance in dynamic scenarios.Compared with ORB-SLAM3,the root mean square error,mean error,median error,and standard deviation in low dynamic sce-narios are enhanced by approximately 60%and over 90%in high dynamic scenarios.The actual experiments in a corridor scene reveal that the proposed system can effectively eliminate feature points on dynamic targets while extracting features,thus guaranteeing system accuracy.

关键词

视觉SLAM/动态目标干扰/深度学习/稠密光流/视觉几何

Key words

visual SLAM/dynamic target interference/deep learning/dense optical flow/visual geography

分类

计算机与自动化

引用本文复制引用

胡青松,任林洋,随学帅,李世银,孙彦景..融合深度学习与稠密光流的动态视觉SLAM[J].信息与控制,2024,53(4):499-507,9.

基金项目

国家自然科学基金项目(52474185,51874299) (52474185,51874299)

"双一流"建设提升自主创新能力项目(2022ZZCX01K01) (2022ZZCX01K01)

中国矿业大学"工业物联网与应急协同"创新团队资助计划(2020ZY002) (2020ZY002)

信息与控制

OA北大核心CSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文