| 注册
首页|期刊导航|原子能科学技术|面向液态铅铋数值传热的湍流热通量模型构建综述

面向液态铅铋数值传热的湍流热通量模型构建综述

蔡杰进 吴杰 黄彦平

原子能科学技术2024,Vol.58Issue(z1):393-403,11.
原子能科学技术2024,Vol.58Issue(z1):393-403,11.DOI:10.7538/yzk.2024.youxian.0422

面向液态铅铋数值传热的湍流热通量模型构建综述

Review of Turbulent Heat Flux Model Construction for Numerical Heat Transfer in Liquid Lead-bismuth

蔡杰进 1吴杰 1黄彦平2

作者信息

  • 1. 华南理工大学电力学院,广东 广州 510640
  • 2. 中国核动力研究设计院中核核反应堆热工水力技术重点实验室,四川成都 610041
  • 折叠

摘要

Abstract

Numerical heat transfer of liquid lead-bismuth eutectic(LBE)is limited by the extremely low-Prandtl-number characteristic,conventional Reynolds analogy method fails to accurately close and describe the turbulent heat flux(THF)in the averaged energy equation and the temperature transport process.Therefore,it is necessary to construct models specifically for the closure of THF in low-Prandtl-number fluids.The models are divided into four categories:turbulent-Prandtl-number models,algebraic heat flux models,second-moment differential heat flux models,and data-driven models using machine learning.This study provides insights into subsequent research,optimization,and innovation in THF closure modeling by reviewing their research progress,modeling concepts,the complexity demonstrated by the models,and their applicability in engineering applications.In the simulation of forced convection heat transfer between fuel rod bundles in LBE,explicit algebraic heat flux models show promising application prospects,while machine learning provides a fresh perspective for THF closure.

关键词

湍流热通量/液态金属/数值传热/代数热通量模型/机器学习

Key words

turbulent heat flux/liquid metal/numerical heat transfer/algebraic heat flux model/machine learning

分类

核科学

引用本文复制引用

蔡杰进,吴杰,黄彦平..面向液态铅铋数值传热的湍流热通量模型构建综述[J].原子能科学技术,2024,58(z1):393-403,11.

基金项目

国家自然科学基金(12275088) (12275088)

广东省重点研发计划(202180101250002) (202180101250002)

国防科技工业核动力创新中心专项(HDLCXZX-2022-008) (HDLCXZX-2022-008)

原子能科学技术

OA北大核心CSTPCD

1000-6931

访问量0
|
下载量0
段落导航相关论文