| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于Informer融合模型的油田开发指标预测方法

基于Informer融合模型的油田开发指标预测方法

张强 薛陈斌 彭骨 卢青

吉林大学学报(信息科学版)2024,Vol.42Issue(5):799-807,9.
吉林大学学报(信息科学版)2024,Vol.42Issue(5):799-807,9.

基于Informer融合模型的油田开发指标预测方法

Method for Predicting Oilfield Development Indicators Based on Informer Fusion Model

张强 1薛陈斌 1彭骨 1卢青2

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江大庆 163318
  • 2. 东北石油大学现代教育技术中心,黑龙江大庆 163318
  • 折叠

摘要

Abstract

A fusion model based on material balance equation and Informer is proposed to solve the prediction problem of oilfield development indicators.Firstly,the mechanism model before and after the decline of oil field development production is established through the knowledge of the material balance equation field.Secondly,the established mechanism model is fused with the loss function of the Informer model as a constraint to establish an indicator prediction model that conforms to the physical laws of oil field development.Finally,the actual production data of the oil field is used for experimental analysis.The results indicate that compared to several purely data-driven cyclic structure prediction models,this fusion model has better prediction performance under the same data conditions.The mechanism constraints of this model can guide the training process of the model,so that its rate of convergence is faster,and the prediction at the peak and trough is more accurate.This fusion model has better predictive and generalization abilities,and has a certain degree of physical interpretability.

关键词

Informer模型/机理模型/深度融合模型/预测

Key words

Informer model/mechanism model/deep fusion model/prediction

分类

信息技术与安全科学

引用本文复制引用

张强,薛陈斌,彭骨,卢青..基于Informer融合模型的油田开发指标预测方法[J].吉林大学学报(信息科学版),2024,42(5):799-807,9.

基金项目

国家自然科学基金资助项目(42002138) (42002138)

黑龙江省自然科学基金资助项目(LH2022F008) (LH2022F008)

黑龙江省博士后专项基金资助项目(LBH-Q20077) (LBH-Q20077)

黑龙江省优秀青年教师基础研究支持计划基金资助项目(YQJH2023073) (YQJH2023073)

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量8
|
下载量0
段落导航相关论文