基于gnn和X-Net融合的ITE估计方法OA北大核心CSTPCD
ITE estimation method based on fusion of g and X-Net
因果推断可以帮助人们制定更加合理的决策方案,在电子商务和精准医学等领域有广泛的应用,其性能严重依赖对个体因果效应(Individual Treatment Effect,ITE)的准确估计,观察数据中存在的选择偏差与样本数量不一致问题都会影响ITE估计的准确性.对于选择偏差问题,现有的深度学习方法主要通过平衡所有协变量来进行缓解,但平衡协变量中与处理无关的噪声变量会导致对个体因果效应的估计不准确.对于样本数量不一致问题,这些方法主要通过在损失函数中添加样本权重来进行缓解,但其不能有效提升模型预测的准确性.提出一种基于深度表示学习的方法,通过gnn和IPM(Integral Probability Metric)网络共同诱导神经网络得到协变量中非噪声变量的平衡共享表示,然后引入X-Net来缓解样本数量不一致问题.在半合成与真实数据集上的实验结果表明,提出的算法可以通过缓解样本选择偏差与样本数量不一致问题来提高模型ITE估计的准确性.
Causal inference helps people make more rational decision-making plans and has wide applications in fields such as e-commerce and precision medicine,and its performance relies critically on the accurate estimation of Individual Treatment Effect(ITE).The selection bias problem and the sample imbalance problem in the observational data affect the accuracy of the individual treatment effect estimation.For the selection bias problem,existing deep learning methods mainly mitigate it by balancing all the covariates,but balancing the processing-independent noise variables in the covariates can lead to inaccurate estimation of individual treatment effect.For the sample imbalance problem,these methods mainly mitigate it by adding sample weights to the loss function.However,this practice does not effectively improve the accuracy of neural network prediction model.In this paper,we propose a method based on deep representation learning,which jointly induces neural networks to obtain balanced shared representations of non-noise variables in the covariates through gnn and IPM(Integral Probability Metric)networks,and then introduces the X-Net to alleviate the sample imbalance problem.The experimental results on semi-synthetic and real datasets respectively show that our algorithm can improve the accuracy of the model individual treatment effect estimation by mitigating the sample selection bias problem and sample imbalance problem.
赵延新;原泽鹏;翟岩慧;牛瑞琪;李德玉
山西大学计算机与信息技术学院,太原,030006山西大学计算机与信息技术学院,太原,030006||计算智能与中文信息处理教育部重点实验室,山西大学,太原,030006
计算机与自动化
潜在结果模型个体因果效应深度表示学习选择偏差样本数量不一致
potential outcome modelindividual treatment effectdeep representation learningselection biassample imbalance
《南京大学学报(自然科学版)》 2024 (005)
753-762 / 10
国家自然科学基金(62072294,61972238)
评论