|国家科技期刊平台
首页|期刊导航|南京大学学报(自然科学版)|融合先验知识的连边功能连接震后PTSD分类方法

融合先验知识的连边功能连接震后PTSD分类方法OA北大核心CSTPCD

Post-earthquake PTSD classification method based on prior knowledge and edge-centric functional connectivity

中文摘要英文摘要

在临床上提取创伤后应激障碍诊断(Post-Traumatic Stress Disorder,PTSD)患者的特异性神经影像特征同时构建其分类诊断模型具有重要意义.与传统的神经影像分类模型相比,提出了利用先验知识仅提取重要脑区信息以减少大量含噪信号,同时将传统功能连接替换成连边功能连接进行特征提取,并提出递归特征消除-多层感知机(Recursive Feature Elimination-Multilayer Perceptron,RFE-MLP)分类模型,以提高地震后PTSD与地震后非PTSD对照组的分类诊断准确性.首先,针对全脑中有大量含噪信号,利用先验知识提取PTSD相关脑区,着重于地震后PTSD相关脑区的特征构建;其次,利用连边功能连接替换传统的节点功能连接,以获得大脑功能连接的高阶特征信息;最后,提出了RFE-MLP分类诊断模型,自适应学习模型权重信息,提高地震后PTSD的诊断准确率.实验结果显示,在五折交叉验证下对地震后PTSD患者与地震后健康对照组的静息态功能磁共振数据(Resting-State Functional Magnetic Resonance Imaging,rs-fMRI)的分类准确性(Accuracy,ACC)、敏感度(Sensitivity,SEN)、特异性(Specificity,SPE)和 ROC 曲线下面积(Area under Curve,AUC)分别达到 92.5%,93.5%,92.1%和 94.8%,且发现左额中回(Frontal_Mid_L)与地震后PTSD严重程度相关性最高.研究结果证明,该方法能够从磁共振数据中提取更多的关键特征信息,提高了地震后PTSD的分类诊断准确率,有利于找到PTSD的特异性脑区.该方法可以进一步用于其他PTSD类型的分类诊断和特异性脑区定位.

It is of great clinical significance to extract the specific neuroimaging features of patients diagnosed with seismic post-traumatic stress disorder(PTSD)and design its categorical model.Compared with the traditional neuroimaging classification model,this study used prior knowledge to extract ROIs to reduce a large number of noisy signals.Meanwhile,the research also changed the functional connection mode and proposed a classification model named RFE-MLP,which effectively improved the classification accuracy of post-earthquake PTSD and post-earthquake non-PTSD control groups.Firstly,in view of a large number of noisy signals in the whole brain,the PTSD-related brain regions were extracted by using prior knowledge,focusing on the feature construction of PTSD-related brain regions after the earthquake.Secondly,the traditional node function connection was replaced by the edge-centric function connection to obtain the high-order feature information of the brain function connection.Finally,the RFE-MLP classification model was proposed,which learned the model weight information adaptively and improved the accuracy of PTSD after earthquake.The results showed that the classification accuracy(ACC),sensitivity(SEN),specificity(SPE)and area under curve(AUC)values of post-earthquake PTSD patients and post-earthquake health control groups reached 92.5%,93.5%,92.1%and 94.8%,and it was found that the left middle frontal gyrus(Frontal_Mid-L)had the highest correlation with post-earthquake PTSD severity.The experimental results show that this method extracts more key feature information from fMRI,improves the accuracy of classification and diagnosis of PTSD after earthquake,and facilitates the precise localization of brain regions related to PTSD after earthquake and other trauma types.

罗昌宇;张俊然;莫贤;朱鸿儒;孙昂;伍雅嘉

四川大学电气工程学院,成都,610065||四川大学"医学+信息"中心,成都,610065四川大学"医学+信息"中心,成都,610065||四川大学华西医院,成都,610041

计算机与自动化

PTSD连边功能连接RFE-MLPrs-fMRI

PTSDedge-centric functional connectivityRFE-MLPrs-fMRI

《南京大学学报(自然科学版)》 2024 (005)

793-803 / 11

国家自然科学基金"数学与医疗健康交叉"重点专项(12126606)及联合项目琶洲实验室(黄埔)研发项目(2023K0605),四川大学"医学+信息"中心融合创新项目(YGJC012),四川省科技计划(23ZDYF2913),德阳科技(揭榜)项目(2021JB-JZ007),四川大学华西医院临床研究创新项目(2019HXCX03),智能电网四川省重点实验室应急重点项目(020IEPG-KL-20YJ01)

10.13232/j.cnki.jnju.2024.05.010

评论