| 注册
首页|期刊导航|数字海洋与水下攻防|基于强化学习的AUV对接控制算法研究

基于强化学习的AUV对接控制算法研究

庄英豪 张天泽 张悦 李沂滨

数字海洋与水下攻防2024,Vol.7Issue(5):前插1,464-470,8.
数字海洋与水下攻防2024,Vol.7Issue(5):前插1,464-470,8.DOI:10.19838/j.issn.2096-5753.2024.05.001

基于强化学习的AUV对接控制算法研究

Research on AUV Docking Control Algorithm Based on Reinforcement Learning

庄英豪 1张天泽 2张悦 1李沂滨1

作者信息

  • 1. 山东大学海洋研究院,山东 青岛 266000
  • 2. 中国石油大学(华东)机电工程学院,山东 青岛 266580
  • 折叠

摘要

Abstract

Autonomous underwater vehicles(AUVs)is an important kind of equipment for human to explore and utilize the ocean.Intelligent solution of path planning and control is the basis for an AUV to accomplish other complex tasks.Considering the local path planning problem under terminal attitude constraint and combining with AUV autonomous docking control,a docking controller is developed based on the improved Deep Reinforcement Learning(DRL)algorithm.It enables the AUV to dock autonomously and can increase AUV endurance.Considering the complex wave disturbance factors in the practical operating scenario,a nonlinear disturbance observer(NDO)is used to estimate the external disturbances of each degree of freedom in AUV three-dimensional motion.In order to ensure that the AUV can accomplish the three-dimensional docking control task in a disturbed environment,scientific observation quantities and reward functions are designed for the DRL agent in combination with measurable state quantities.Simulation results demonstrate the effectiveness and robustness of the proposed method.

关键词

自主式水下航行器/路径规划/对接控制/强化学习

Key words

autonomous underwater vehicle/path planning/docking control/reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

庄英豪,张天泽,张悦,李沂滨..基于强化学习的AUV对接控制算法研究[J].数字海洋与水下攻防,2024,7(5):前插1,464-470,8.

基金项目

国家自然科学基金面上项目"面向多潜艇故障分布式诊断的增量联邦迁移学习"(62273202). (62273202)

数字海洋与水下攻防

2096-5753

访问量0
|
下载量0
段落导航相关论文