首页|期刊导航|物理化学学报|单晶高镍三元正极材料:挑战与策略

单晶高镍三元正极材料:挑战与策略OA北大核心CSTPCD

Single-Crystal Nickel-Rich Cathode Materials:Challenges and Strategies

中文摘要英文摘要

进一步提高锂离子电池的能量密度、循环寿命和安全性对电动汽车的普及至关重要.三元层状正极材料因其高比容量、低温性能良好、成本较低等优势,近年来在动力电池领域备受关注.高镍化和高电压化被认为是提高三元材料能量密度的有效途径.然而,基于传统多晶三元正极的高镍化和高压化可能会显著降低材料的循环稳定性和热安全性,设计单晶三元正极材料被认为可以有效缓解高压多晶三元正极稳定性问题的可行途径.但是,单晶三元正极仍然面临着离子传输动力学受阻、非均匀荷电状态、晶格参数各向异性变化、阳离子混排、化学机械降解等挑战.因此,本文从三元正极材料的本质结构演化角度系统地分析和总结了多晶与单晶结构失效的共性问题.此外,还归纳了单晶高镍三元材料的合成工艺调控、元素掺杂、表界面改性等策略,梳理了结构设计与电化学性能之间的构效关系,并对单晶高镍三元正极材料的未来发展方向进行了展望,能够为高比能三元正极材料的开发提供理论指导.

Over the past three decades,significant advancements in lithium-ion battery technology have greatly improved human convenience,particularly in today's thriving electric vehicle industry.Further enhancements in the energy density,cycle life,and safety of lithium-ion batteries are crucial for the widespread adoption of electric vehicles.In recent years,transition metal layered oxides have garnered significant attention in the industrial power battery sector due to their advantages,including high specific capacity,commendable low-temperature performance,and cost-effectiveness.Increasing the nickel content and adjusting the charging cut-off voltage are recognized as effective means to enhance the energy density of transition metal layered oxides.However,these strategies tend to degrade cycling stability and thermal safety in conventional polycrystalline layered cathode materials.Benefiting from the mechanical stability of intact primary particles,the single-crystal structure of layered cathode materials can effectively mitigate intergranular cracking issues associated with high charging voltages.Nevertheless,due to the intrinsic structural properties of layered materials,single-crystal structures still face challenges related to sluggish Li+transport kinetics,heterogeneous state of charge,anisotropic changes in lattice parameters,cation mixing,and chemo-mechanical degradation.The temporal and spatial evolution of the physicochemical properties within the internal microstructure of materials still requires comprehensive analysis using advanced operando characterization techniques.Currently,there is limited understanding of the intricate interplay between thermodynamics and kinetics in the synthesis process of single-crystal cathode materials.A more profound exploration of the structural degradation and synthesis mechanisms of single-crystal materials will serve as a fundamental basis for targeted modification strategies.Regrettably,existing single-crystal synthesis processes and modification approaches still fall short of market expectations.This shortfall is especially noticeable in future applications in solid-state batteries,where interface issues related to solid-state-electrolyte and cathode material are serious.Addressing these challenges necessitates the precise regulation of the microstructure of composite cathodes.Therefore,this review systematically analyzes and summarizes common issues related to the failure of both polycrystal and single-crystal structures,taking into account the intrinsic structural evolution at various temporal and spatial scales.We also outline strategies for regulating the synthesis process,element doping,and surface-interface modification of single-crystal nickel-rich layered cathode materials from the perspective of coherent structural design.We also intent to elucidate the essential connection between structural design and electrochemical performance.The microstructural design of single-crystal nickel-rich cathode materials should emphasize the alignment of lattice parameters between heterostructures and layered oxides,as well as the modulation of their spatial distribution,thereby ensuring the long-term efficacy of element doping and surface-interface modification.Finally,we offer a perspective on the future development of single-crystal nickel-rich cathode materials,highlighting their potential success in the realm of power batteries.

黄辰悦;郑鸿飞;秦宁;王灿沛;王利光;陆俊

浙江大学化学工程与生物工程学院,杭州 310027浙江大学化学工程与生物工程学院,杭州 310027浙江大学化学工程与生物工程学院,杭州 310027浙江大学化学工程与生物工程学院,杭州 310027浙江大学化学工程与生物工程学院,杭州 310027浙江大学化学工程与生物工程学院,杭州 310027

化学

锂离子电池层状正极材料高镍单晶结构失效机制结构演化改性策略

Lithium-ion batteryLayered cathode materialNickel-richSingle-crystal structureFailure mechanismStructural evolutionModification strategy

《物理化学学报》 2024 (9)

35-55,21

The project was supported by the National Natural Science Foundation of China(52272241). 国家自然科学基金(52272241)资助项目

10.3866/PKU.WHXB202308051

评论