首页|期刊导航|物理化学学报|镍钒水滑石电极用于可放大电催化5-羟甲基糠醛氧化耦合产氢

镍钒水滑石电极用于可放大电催化5-羟甲基糠醛氧化耦合产氢OA北大核心CSTPCD

Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation

中文摘要英文摘要

可再生能源驱动的电催化水裂解是获取绿氢的重要途径,但受到缓慢的阳极析氧反应(OER)限制.使用热力学有利的5-羟甲基糠醛氧化反应(HMFOR)代替OER的电解水制氢耦合氧化策略提供了一种降低能耗的有效策略,同时可以生产高附加值的有机含氧化合物,如2,5-呋喃二甲酸(FDCA).在该领域,大量工作集中于催化剂工程以获得更好的催化活性和产物选择性.然而,很少有研究关注到5-羟甲基糠醛(HMF)的规模化氧化制备FDCA.为此,我们合成了一种镍钒水滑石(NiV-LDH)催化剂用于高效HMFOR,在1.52 V vs.RHE(可逆氢电极)下,电流密度达到100 mA∙cm-2 FDCA的法拉第效率高达94.6%.与OER相比,HMFOR将对应的氢气生产率提高了两倍.作为概念验证,我们使用流动反应器展示了连续且可规模化的HMFOR,在10 A条件下,实现了94.8%的高HMF单程转化率和98.5%的高FDCA选择性.

Electrocatalytic water splitting driven by renewable energy is a potential approach to obtain green hydrogen.However,the relatively high overpotential of anodic oxygen evolution reaction(OER)is one of the main obstacles hindering the widespread popularity of water electrocatalysis technology.To this end,electrochemical hydrogen-evolution coupled with the oxidation of biomass derived platforms,such as replacing OER with thermodynamically favorable 5-hydroxymethylfurfural(HMF)oxidation reaction(HMFOR),provides an efficient strategy to lower energy utilization and co-producing valuable organic oxygenates.For instance,2,5-furandicarboxylic acid(FDCA)is emerging as an important and value-added industrial chemical obtained from HMFOR,which can be used as the monomer of various sustainable bioplastics(e.g.,polyesters,polyamides).Great efforts have been devoted to this arena on electrocatalyst engineering for better activity and product selectivity.However,less work has focused on the process scalability of HMFOR to FDCA.Here,we report a simple hydrothermal method to fabricate an array-structured nickel-vanadium layered double hydroxides(NiV-LDH)growth on nickel foam matrix,demonstrating large-sized(6 cm×10 cm)synthesis of self-supported electrode.The as-prepared material is active and efficient for HMFOR,achieving 100 mA∙cm-2 of current density at 1.52 V vs.RHE(reversible hydrogen electrode)with 94.6%of Faradaic efficiency and 89.1%of yield to FDCA.Compared to traditional water splitting,replacing OER with HMFOR improves the counterpart hydrogen production rate by two-times.As proof-of-concept,we demonstrate the continuous and scalable HMFOR using a low-cost and membrane-free flow reactor system with electrode area of 49.5 cm2.Under a constant current of 10 A,this system achieves high HMF single-pass conversion(94.8%),high FDCA concentration(~186.8 mmol∙L-1),and high FDCA selectivity(98.5%)using 200 mmol∙L-1 of HMF feedstock at a flow rate of 3.62 mL∙min-1.Finally,gram-scale FDCA(119.5 g)can be obtained with hydrogen production using water electrolysis technology.This work highlights that catalyst design and system engineering should be coupled in the future rather than continuing in parallel directions.

李美然;宋英杰;万鑫;李洋;罗毅奇;贺业亨;夏博文;周华;邵明飞

北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029中国石油石油化工研究院,北京 100195中国石油石油化工研究院,北京 100195北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029||衢州资源化工创新研究院,浙江 衢州 324000北京化工大学化学学院,化工资源有效利用国家重点实验室,北京 100029||衢州资源化工创新研究院,浙江 衢州 324000

化学

电催化水分解耦合制氢层状双金属氢氧化物5-羟甲基糠醛2,5-呋喃二甲酸

Electrocatalytic water splitting coupled hydrogen productionLayered double hydroxide5-Hydroxymethylfurfural2,5-Furandicarboxylic acid

《物理化学学报》 2024 (9)

56-58,3

The project was supported by the National Natural Science Foundation of China(22090030,22090031,22288102)and the Fundamental Research Funds for the Central Universities(buctrc202211). 国家自然科学基金(22090030,22090031,22288102)和中央高校基本业务费(buctrc202211)资助项目

10.3866/PKU.WHXB202306007

评论