锰基正极材料在水系锌离子电池中的挑战及性能提升策略OA北大核心CSTPCD
Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries
锌离子电池(ZIBs)由于其安全性、可持续性、成本效益和高能量密度而越来越受欢迎,有望成为锂离子电池(LIBs)的替代品.目前对锌离子电池已经进行了广泛的研究.然而,锰基正极材料在锌离子电池中的应用带来了挑战,特别是金属溶解和材料不稳定性等问题.这些挑战导致电池循环稳定性较差,阻碍了锌离子电池发展的进程.本文概述了锌离子存储机制,阐明了锰基正极材料面临的挑战,并提出了改善其性能的优化策略.最后,讨论了锰基正极材料的潜力.
Non-renewable energy sources such as fossil fuels are increasingly depleted.In order to cope with the potential energy crisis,it is urgent to develop clean and efficient renewable energy sources.Advanced energy storage technology based on electrical energy holds critical significance to the sustainable and steady development of human society.Aqueous rechargeable batteries are a kind of promising electrochemical energy storage devices.Zinc-ion batteries(ZIBs)are gaining increasing popularity due to their safety,sustainability,cost-effectiveness and high energy density,positioning them as potential successors to current Lithium-ion batteries(LIBs)with a high degree of commercialization.The extraordinary mechanical flexibility and excellent electrochemical performance exhibited by ZIBs holds great significance in advancing the development of flexible and wearable batteries.Manganese-based oxides with large channel size possess the characteristics of high theoretical capacity,various oxidation states(including+2,+3,+4)and low cost,which are commonly employed as cathode materials for AZIBs.Nevertheless,the electrochemical performance of current manganese-based ZIBs is not satisfactory,facing the challenges of metal dissolution,material structure instability,notably a strong electrostatic interaction exhibited by divalent Zn2+ions in the host structure resulting in slow transmission kinetics.These challenges contribute to low cycle stability of the battery,impeding practical application and the progression of ZIBs.To solve these problems,diverse structural engineering strategies including defect engineering have been exploited,which can effectively improve the transport kinetics of zinc ions.From the perspective of enhancing the performance of the material itself,interlayer intercalation and other measures can be taken to better the microstructure or morphology of manganese-based materials.By improving the electrical conductivity of the material and enhancing ionic bonding,the structural stability and electrochemical performance of the material can be effectively improved.And from the angle of battery design,in order to improve the stability of the electrode-electrolyte interface,the electrolyte is optimized,or a fresh preparation method different from the conventional slurry coating process is adopted,which is also a promising method to design a new electrode without binder and the electrode components can still be evenly distributed.This review provides an overview of Zinc-ion storage mechanisms:the reversible Zn2+insertion/extraction;the reversible interposition and deintercalation of Zn2+and H+;the chemical conversion reactions,and the mechanism of dissolution-deposition reaction.Furthermore,the challenges faced by manganese-based cathode materials are clarified,and the optimization strategies to improve their electrochemical performance by increasing active sites,reducing solid-state diffusion energy barriers,inhibiting the dissolution of active substances,and improving material stability are highlighted.Finally,the practical application and potential of ZIBs assembled by manganese-based cathode materials in biomedical equipment and other electronic devices are also discussed.
秦豆豆;丁俊阳;梁初;刘倩;冯立纲;罗扬;胡广志;罗俊;刘熙俊
广西大学资源环境与材料学院,省部共建特色金属材料与组合结构全寿命安全国家重点实验室,广西有色金属及特色材料加工重点实验室,有色金属及材料加工新技术教育部重点实验室,南宁 530004||广西大学,电化学能源材料重点实验室,南宁 530004广西大学资源环境与材料学院,省部共建特色金属材料与组合结构全寿命安全国家重点实验室,广西有色金属及特色材料加工重点实验室,有色金属及材料加工新技术教育部重点实验室,南宁 530004浙江工业大学浙江碳中和创新研究院,浙江省碳减排与监测国际科技合作基地,杭州 310014||德清县浙工大莫干山研究院,浙江 湖州 313200成都大学,高等研究院,成都 610106扬州大学化学与化工学院,江苏 扬州 225002Department of Materials,ETH Zürich,Zürich 8093,Switzerland云南大学生态与环境科学学院,高原湖泊生态与污染防治研究所,昆明 650504电子科技大学深圳高等研究院,深思实验室,广东 深圳 518110广西大学资源环境与材料学院,省部共建特色金属材料与组合结构全寿命安全国家重点实验室,广西有色金属及特色材料加工重点实验室,有色金属及材料加工新技术教育部重点实验室,南宁 530004||广西大学,电化学能源材料重点实验室,南宁 530004
化学
水系锌离子电池锰基化合物阴极材料存储机制优化策略
Aqueous zinc ion batteryManganese-based compoundCathode materialsStorage mechanismOptimization strategy
《物理化学学报》 2024 (10)
20-28,9
The project was supported by the National Natural Science Foundation of China(22075211,52072342,51971157),the Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ20210324123202008,JCYJ20210324122803009,ZDSYS20210813095534001),the Guangdong Basic and Applied Basic Research Foundation(2021A1515110880),and the Tianjin Science Fund for Distinguished Young Scholars(19JCJQJC61800).国家自然科学基金(22075211,52072342,51971157),深圳市科技计划项目(JCYJ20210324115412035,JCYJ20210324123202008,JCYJ20210324122803009,ZDSYS20210813095534001),广东省基础研究与应用基础研究基金(2021A1515110880)和天津市杰出青年科学基金(19JCJQJC61800)资助
评论