S型CeO2/Bi2MoO6微球异质结的理性设计及其高效光催化CO2还原OA北大核心CSTPCD
Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction
人工半导体光催化CO2转化被广泛认为是模拟自然碳循环的最有前途的策略之一.其中,Bi2MoO6具有光催化CO2转化的潜力.然而,由于其光生电荷载体的快速复合,其催化性能仍然不足.因此,改善Bi2MoO6的催化效率是一个紧迫的问题.在这项研究中,我们通过水热法合成了Bi2MoO6纳米片,并在其表面同时生长了CeO2纳米颗粒,形成了Ce3+/Ce4+离子桥接修饰的S型异质结.时间分辨光致发光光谱和光电化学测试揭示了这种异质结的增强电荷分离效应.此外,原位X射线光电子能谱分析和理论计算进一步证实,光生电子转移路径遵循S型机制,从氧化型半导体Bi2MoO6的导带转移到还原型半导体CeO2的价带.实验结果表明,CeO2/Bi2MoO6、Bi2MoO6和CeO2的光催化CO2还原为CO的效率分别为65.3、14.8和1.2 µmol·g-1·h-1.与纯Bi2MoO6相比,CeO2/Bi2MoO6复合催化剂将CO2光催化还原为CO的催化效率提高了3.12倍.这项工作为设计和构建新型S型异质结光催化剂提供了独特的见解.
In the pursuit of efficient photocatalytic carbon dioxide(CO2)conversion,the use of artificial semiconductors powered by solar energy offers great potential for simulating natural carbon cycling.However,the efficiency of photocatalytic CO2 conversion remains suboptimal,primarily due to inadequate separation of photogenerated charges,which hinders the performance of semiconductor-based CO2 reduction.Consequently,recent research efforts have focused on identifying ideal materials for CO2 photocatalytic conversion.Among the candidate materials,the structure of Bi2MoO6 consists of alternating layers of(Bi2O2)2+and perovskite-like(MoO4)2-layers with shared oxygen atoms between them.This inherent charge distribution within Bi2MoO6 creates an inhomogeneous electric field,facilitating the efficient separation of photogenerated charge carriers.The morphology and structure of a catalyst significantly influence the rate of recombination of photogenerated charge carriers.Research has shown that ultrathin Bi2MoO6 nanosheets,compared to other 2D and 3D structures of Bi2MoO6 materials,possess longer fluorescence lifetimes,providing more opportunities for the separation of photogenerated charge carriers.However,Bi2MoO6 still exhibits relatively low catalytic efficiency due to its insufficiently negative conduction band position(ranging between-0.2 and-0.4 V).To address this limitation,a viable strategy is to load a semiconductor with a more negatively positioned conduction band onto Bi2MoO6,creating an S-scheme heterojunction.In this study,Bi2MoO6 nanosheets were synthesized through a hydrothermal method,and simultaneously,CeO2 nanoparticles were grown on their surfaces,forming an S-scheme heterojunction modified with Ce3+/Ce4+ion bridges.Time-resolved photoluminescence(TRPL)and photoelectrochemical tests demonstrated the enhanced charge separation effect of this heterojunction.In situ X-ray photoelectron spectroscopy(In situ XPS)analysis and theoretical calculations further confirmed that photogenerated electrons follow an S-scheme mechanism,transferring from Bi2MoO6 to CeO2.Experimental results revealed that the photocatalytic CO2 reduction efficiencies of CeO2/Bi2MoO6,Bi2MoO6,and CeO2 were 65.3,14.8,and 1.2 µmol·g-1·h-1,respectively.Compared to pure Bi2MoO6,the catalytic efficiency of the CeO2/Bi2MoO6 composite catalyst for CO2 photocatalytic reduction to CO improved by a factor of 3.12.This enhancement in photocatalytic CO2 conversion performance can be attributed to the synergistic interaction between the S-scheme heterojunction and Ce3+/Ce4+ion bridging,resulting in enhanced light absorption,efficient charge separation,and redox capabilities of the composite catalyst.This study offers valuable insights into the rational design and construction of novel S-scheme heterojunction photocatalysts.
许修涛;邵春风;张金锋;王中辽;代凯
淮北师范大学,绿色和精准合成化学及应用教育部重点实验室、污染物敏感材料与环境修复安徽省重点实验室、智能计算及应用安徽省重点实验室和安徽省陶铝新材料产业共性技术研究中心,安徽 淮北 235000淮北师范大学,绿色和精准合成化学及应用教育部重点实验室、污染物敏感材料与环境修复安徽省重点实验室、智能计算及应用安徽省重点实验室和安徽省陶铝新材料产业共性技术研究中心,安徽 淮北 235000淮北师范大学,绿色和精准合成化学及应用教育部重点实验室、污染物敏感材料与环境修复安徽省重点实验室、智能计算及应用安徽省重点实验室和安徽省陶铝新材料产业共性技术研究中心,安徽 淮北 235000淮北师范大学,绿色和精准合成化学及应用教育部重点实验室、污染物敏感材料与环境修复安徽省重点实验室、智能计算及应用安徽省重点实验室和安徽省陶铝新材料产业共性技术研究中心,安徽 淮北 235000淮北师范大学,绿色和精准合成化学及应用教育部重点实验室、污染物敏感材料与环境修复安徽省重点实验室、智能计算及应用安徽省重点实验室和安徽省陶铝新材料产业共性技术研究中心,安徽 淮北 235000
化学
光催化CO2转化CeO2Bi2MoO6S型异质结电荷转移
Photocatalytic CO2 conversionCeO2Bi2MoO6S-scheme heterojunctionCharge transfer
《物理化学学报》 2024 (10)
39-42,4
This work was supported by the National Natural Science Foundation of China(22278169,51973078),the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province(2022AH010028),the Major Projects of Education Department of Anhui Province(2022AH040068),the Key Foundation of Educational Commission of Anhui Province(2022AH050396,2022AH050376)and Anhui Provincial Quality Engineering Project(2022sx134).国家自然科学基金(22278169,51973078),安徽省高校优秀科研创新团队(2022AH010028),安徽省教育厅重大项目(2022AH040068),安徽省教育厅重点项目(2022AH050396,2022AH050376)和安徽省质量工程项目(2022sx134)
评论