一种新型等离子体共振效应调控的Ag/Ag3PO4/C3N5S型异质结光催化材料高效降解左氧氟沙星抗生素OA北大核心CSTPCD
Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation
抗生素在自然水体中的含量不断升高,引发的水体污染对社会的可持续发展构成了巨大威胁.光催化技术是一种高效且环保的环境净化技术,在解决环境污染方面具有巨大的应用前景.C3N5是一种性能优越的非贵金属光催化剂.然而,该催化剂的应用面临着一些挑战,比如光反应动力学较慢和光生载流子快速复合的问题.近期的研究表明,构筑独特的S型异质结是获得优良光催化剂的一种有效策略.因此,通过一种简易的制备方法成功构筑了一种等离子体效应协同的Ag/Ag3PO4/C3N5 S型异质结光催化材料.由于等离子体效应和S型异质结的协同作用,Ag/Ag3PO4/C3N5异质结展现出优异的吸收太阳光的能力、高效分离光生载流子的能力以及强大的光氧化还原能力,能够在太阳光的激发下有效产生大量的·OH和·O2-自由基.因此,Ag/Ag3PO4/C3N5表现出卓越的光催化性能,对左氧氟沙星(LEV)的降解速率常数高达0.0362 min-1,比C3N5、Ag3PO4和Ag3PO4/C3N5分别提高了24.8、1.1和0.7倍.此外,Ag/Ag3PO4/C3N5异质结具有出色的抗外界环境干扰性和可重复使用性.该研究为C3N5基光催化剂材料在环境净化方面迈出了坚实的一步.
The escalating presence of pharmaceutical antibiotics in natural water poses an overwhelming threat to the sustainable development of society.Photocatalysis technology stands out as a promising and cutting-edge environmental purification alternative.C3N5,identified as a distinctive nonprecious nonmetal photocatalyst,holds potential for environmental protection.However,challenges persist originating from the sluggish photoreaction kinetics and severe photo-carrier reunion.Currently,the design of a special S-scheme photosystem proves to be a reliable strategy for obtaining outstanding photocatalysts.In this context,a plasmonic S-scheme photosystem involving Ag/Ag3PO4/C3N5 was developed through a feasible route.The compactly connected 0D/0D/2D Ag/Ag3PO4/C3N5 heterostructure,benefitting from the synergy between the plasmonic effect and the S-scheme junction,facilitates the efficient utilization of appreciably reinforced sunlight absorption,effective photo-carrier disassociation,and notable photoredox capacity.Consequently,this system generates·OH and·O2-effectively.Ag/Ag3PO4/C3N5 demonstrates a superb photocatalytic levofloxacin eradication rate of 0.0362 min-1,marking a substantial advancement of 24.8,1.1,and 0.7 folds compared to C3N5,Ag3PO4,and Ag3PO4/C3N5,respectively.Impressively,Ag/Ag3PO4/C3N5 delivers remarkable anti-interference performance and reusability.This achievement signifies a significant step toward developing potent C3N5-involved photosystems for environmental purification.
董珂欣;申楚琦;阎如玉;刘艳萍;庄春强;李世杰
浙江海洋大学,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022浙江海洋大学,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022浙江海洋大学,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022浙江海洋大学,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022北京工业大学,材料与制造学部,固体微结构与性能北京市重点实验室,北京 100124浙江海洋大学,国家海洋设施养殖工程技术研究中心,浙江省海产品健康危害因素关键技术研究重点实验室,浙江 舟山 316022
化学
离子体共振效应C3N5S型异质结协同效应抗生素去除内建电场
Plasmonic effectC3N5S-scheme heterojunctionSynergistic effectAntibiotic removalInternal electric field
《物理化学学报》 2024 (10)
43-47,5
This work was supported by the National Natural Science Foundation of China(U1809214),Natural Science Foundation of Zhejiang Province of China(LY20E080014,LTGN23E080001),and Science and Technology Project of Zhoushan of China(2022C41011).国家自然科学基金(U1809214),浙江省自然科学基金(LY20E080014,LTGN23E080001),舟山科技项目(2022C41011)资助
评论