首页|期刊导航|中国机械工程|基于ISABO-IBiLSTM模型的刀具磨损预测方法

基于ISABO-IBiLSTM模型的刀具磨损预测方法OA北大核心CSTPCD

中文摘要

针对现有的刀具磨损预测方法因为缺少优化算法及网络结构不完善而导致预测精度不高的问题,提出了一种将改进的减法优化器(SABO)算法和改进的双向长短时记忆(BiLSTM)网络相结合的刀具磨损状态预测模型(ISABO-IBiLSTM模型)。首先,采用截断法、Hampel滤波法、改进的完全自适应噪声集合经验模态分解(ICEEMDAN)-改进的小波阈值降噪法对加速度振动信号与力信号数据进行预处理。然后,提取预处理后的信号数据的时域、频域、时频域特征,并通过斯皮尔曼和最大互信息相关系数筛选特征,构建模型的输入。最后,利用改进的SABO算法对改进后的BiLSTM网络进行参数寻优,基于所得到的优化参数训练网络实现磨损预测。实验数据分析结果表明,所提出的ISABO-IBiLSTM模型对刀具磨损量的预测精度为98.49%~98.83%,较BiLSTM模型、改进的BiLSTM模型、改进的卷积神经网络(ICNN)-BiLSTM模型有了较大的提高。

曾浩;曹华军;董俭雄;

重庆大学机械传动国家重点实验室,重庆400044

金属材料

刀具磨损预测减法优化器算法双向长短时记忆网络信号处理深度学习

《中国机械工程》 2024 (011)

P.1995-2006 / 12

国家重点研发计划(2022YFB3206700)。

10.3969/j.issn.1004-132X.2024.11.011

评论