| 注册
首页|期刊导航|重庆理工大学学报|周车轨迹预测不确定性智能车避撞策略研究

周车轨迹预测不确定性智能车避撞策略研究

陈龙 王歆叶 熊晓夏 蔡英凤 刘擎超 王海

重庆理工大学学报2024,Vol.38Issue(19):1-12,12.
重庆理工大学学报2024,Vol.38Issue(19):1-12,12.DOI:10.3969/j.issn.1674-8425(z).2024.10.001

周车轨迹预测不确定性智能车避撞策略研究

Research on intelligent vehicle collision avoidance strategy based on uncertainty of surrounding vehicle trajectory prediction

陈龙 1王歆叶 1熊晓夏 2蔡英凤 1刘擎超 1王海2

作者信息

  • 1. 江苏大学汽车工程研究院,江苏镇江 212013
  • 2. 江苏大学汽车与交通工程学院,江苏镇江 212013
  • 折叠

摘要

Abstract

This paper proposes a research method for an intelligent vehicle collision avoidance strategy based on the uncertainty of trajectory prediction of surrounding vehicles.The trajectory prediction module combines physics-based trajectory prediction models with data-driven models to construct a physics-guided trajectory prediction model(PG-LSTM).The model outputs parameters of a two-dimensional Gaussian distribution for the predicted trajectories of surrounding vehicles to represent the uncertainty of drivers'behaviors.The risk assessment and collision avoidance strategy module,leveraging the output of the trajectory prediction model,introduces a new risk metric-Predictive Driving Risk(PDR)and Predictive Relative Driving Risk Index(PRDRI)as reference indicators for assessing future risks,establishing a collision avoidance decision-making mechanism for emergent situations.Complex emergency scenarios are simulated using Carsim.Our results indicate the proposed driving risk assessment model accurately identifies future driving risks in complex driving scenarios.Moreover,the collision avoidance decision mechanism based on driving risk enhances the collision avoidance safety of intelligent vehicles.

关键词

智能汽车/驾驶风险/轨迹预测/避撞策略

Key words

intelligent vehicle/driving risk/trajectory prediction/collision avoidance strategy

分类

交通工程

引用本文复制引用

陈龙,王歆叶,熊晓夏,蔡英凤,刘擎超,王海..周车轨迹预测不确定性智能车避撞策略研究[J].重庆理工大学学报,2024,38(19):1-12,12.

基金项目

国家自然科学基金项目((52002154,52372413,52225212,U20A20331) ((52002154,52372413,52225212,U20A20331)

国家重点研发项目(2023YFB2504403) (2023YFB2504403)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文