| 注册
首页|期刊导航|重庆理工大学学报|考虑前车信息的CNN-BiLSTM的短时车速预测

考虑前车信息的CNN-BiLSTM的短时车速预测

厉成鑫 李美莹 余曼 王姝 赵轩

重庆理工大学学报2024,Vol.38Issue(19):38-47,10.
重庆理工大学学报2024,Vol.38Issue(19):38-47,10.DOI:10.3969/j.issn.1674-8425(z).2024.10.005

考虑前车信息的CNN-BiLSTM的短时车速预测

Research on short-time speed prediction based on WSO-optimized CNN-BiLSTM

厉成鑫 1李美莹 1余曼 2王姝 1赵轩1

作者信息

  • 1. 长安大学汽车学院,西安 710018
  • 2. 长安大学工程机械学院,西安 710064
  • 折叠

摘要

Abstract

Accurate prediction of vehicle speed is of vital importance for vehicle safety and control.In this paper,a Convolutional Neural Networks(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)based vehicle speed prediction model considering the following vehicle information is proposed.And the White Shark Optimisation(WSO)algorithm is introduced to optimize the hyperparameters of the model.With thorough consideration of the information of the front vehicle and other factors affecting the driving speed when following a vehicle,the relevant data are collected through the driver-in-the-loop platform,and six variables(accelerator pedal opening,brake pedal opening,self-vehicle speed,relative vehicle distance,relative vehicle speed,and self-vehicle acceleration)are determined as inputs to the WSO-CNN-BiLSTM model.The number of modes for the variational modal decomposition is determined by the sample entropy value of the data for noise reduction of the data.Our simulation results indicate the multi-input prediction model considering the information of the front vehicle improves the prediction accuracy compared to the single-input prediction.Compared to SVR(Support Vector Regression),LSTM,CNN,and TCN(Temporal Convolutional Network),it reduces the RMSE values by 63.39%,11.45%,58.45%and 42.58%and cuts the MAE values by 59.09%,8.09%,57.29%,and 38.99%respectively,markedly improving the accuracy of vehicle speed prediction.

关键词

车速预测/前车信息/变分模态分解/卷积神经网络/双向长短时记忆神经网络

Key words

vehicle speed prediction/front vehicles information/variational mode decomposition/CNN/BiLSTM

分类

信息技术与安全科学

引用本文复制引用

厉成鑫,李美莹,余曼,王姝,赵轩..考虑前车信息的CNN-BiLSTM的短时车速预测[J].重庆理工大学学报,2024,38(19):38-47,10.

基金项目

国家自然科学基金项目(52172362,52372375) (52172362,52372375)

陕西省自然科学基金项目(2023-YBGY-122) (2023-YBGY-122)

陕西省科技重大专项项目(2020ZDZX06-01-01) (2020ZDZX06-01-01)

陕西省科技产业链项目(2020ZDLGY16-01,2020ZDLGY16-02,2021ZDLGY12-01) (2020ZDLGY16-01,2020ZDLGY16-02,2021ZDLGY12-01)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文