| 注册
首页|期刊导航|重庆理工大学学报|MF-TLID:一种多特征融合输电线覆冰图像去噪方法

MF-TLID:一种多特征融合输电线覆冰图像去噪方法

张宇 窦银科 赵亮亮 焦阳阳 郭栋梁

重庆理工大学学报2024,Vol.38Issue(19):147-155,9.
重庆理工大学学报2024,Vol.38Issue(19):147-155,9.DOI:10.3969/j.issn.1674-8425(z).2024.10.018

MF-TLID:一种多特征融合输电线覆冰图像去噪方法

An ice-covered transmission line image denoising method fused with multiple features

张宇 1窦银科 2赵亮亮 3焦阳阳 3郭栋梁3

作者信息

  • 1. 太原理工大学电气与动力工程学院,太原 030024||太原工业学院自动化系,太原 030008||山西省能源互联网研究院,太原 030032
  • 2. 太原理工大学电气与动力工程学院,太原 030024||山西省能源互联网研究院,太原 030032||煤电清洁智能控制教育部重点实验室,太原 030024
  • 3. 山西省能源互联网研究院,太原 030032
  • 折叠

摘要

Abstract

To address the image noise in monitoring the ice-covered state of transmission lines based on images,this paper proposes an ice-covered transmission line image denoising method fused with multiple features(MF-TLID).The algorithm consists of residual attention fusion module,source feature fusion module and feature enhancement module.The cascaded residual structure and hybrid attention are employed in the residual attention fusion module,which not only contributes to feature information mapping but also enhances the expression of feature information.The source features are fused in different feature layers of the network to retain the low-frequency information of the images,which helps improve the clarity of the image.In the feature enhancement module,both local and global features are combined,and the effective feature vector representation is learned by the feature attention weighting to improve the model removal ability.We propose a joint loss function of Charbonnier loss and Perceptual Loss,taking into account the error of pixel level and the improvement of perceptual quality.On the transmission line icing dataset,the standard deviation of Gaussian noises are between 10-40,20-50 and 30-60,PSNR and SSIM reaches {31.015 dB,29.262 dB,27.717 dB } and {0.956,0.943,0.930} respectively.Our results indicate the proposed method performs better than the mainstream denoising methods,showing stronger noise suppression ability and robustness.

关键词

输电线覆冰/图像去噪/特征融合/注意力机制/联合损失函数

Key words

ice-covered transmission line/image denoising/feature fusion/attention mechanism/joint loss function

分类

信息技术与安全科学

引用本文复制引用

张宇,窦银科,赵亮亮,焦阳阳,郭栋梁..MF-TLID:一种多特征融合输电线覆冰图像去噪方法[J].重庆理工大学学报,2024,38(19):147-155,9.

基金项目

山西省重点研发计划项目(202102060301020) (202102060301020)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文