| 注册
首页|期刊导航|电力系统保护与控制|考虑分区与模仿学习的深度强化学习配电网电压优化策略

考虑分区与模仿学习的深度强化学习配电网电压优化策略

李士丹 李航 李国杰 韩蓓 徐晋 李玲 王宏韬

电力系统保护与控制2024,Vol.52Issue(22):1-11,11.
电力系统保护与控制2024,Vol.52Issue(22):1-11,11.DOI:10.19783/j.cnki.pspc.240117

考虑分区与模仿学习的深度强化学习配电网电压优化策略

Voltage optimization strategy for a distribution network based on deep reinforcement learning considering regionalization and imitation learning

李士丹 1李航 1李国杰 1韩蓓 1徐晋 1李玲 2王宏韬3

作者信息

  • 1. 电力传输与功率变换控制教育部重点实验室(上海交通大学),上海 200240
  • 2. 上海沛可科技有限公司,上海 200240
  • 3. 国网浙江省电力有限公司嘉兴供电公司,浙江 嘉兴 314000
  • 折叠

摘要

Abstract

The current deep reinforcement learning(DRL)method has some issues with voltage optimization,such as challenging credit allocation and low exploration efficiency.These all lead to poor performance in model training speed and optimization effect.Considering regionalization and imitation learning,a voltage optimization strategy based on the guidance signal-based multi-agent deep deterministic policy gradient(GS-MADDPG)is proposed.First,electric vehicle(EV)clusters,distributed generation(DG)and reactive power regulators are taken as decision agents to build the reinforcement learning optimization model.Secondly,the external reward is decoupled through regionalization of the distribution network,and combined with imitation learning,an internal reward is introduced through the guidance signal to help agents search for optimization quickly.Finally,an example test is conducted on the improved IEEE 33-node distribution network.The results indicate that the proposed voltage optimization strategy has higher sample utilization,more stable convergence,and higher model training efficiency than the traditional DRL method,and improves the voltage optimization effect.

关键词

配电网电压优化/深度强化学习/分区降损/模仿学习/指导信号

Key words

voltage optimization of distribution network/deep reinforcement learning/zoned loss reduction/imitation learning/guidance signal

引用本文复制引用

李士丹,李航,李国杰,韩蓓,徐晋,李玲,王宏韬..考虑分区与模仿学习的深度强化学习配电网电压优化策略[J].电力系统保护与控制,2024,52(22):1-11,11.

基金项目

This work is supported by the National Key Research and Development Program of China(No.2022YFE0105200). 国家重点研发计划项目资助(2022YFE0105200) (No.2022YFE0105200)

国网浙江省电力有限公司科技项目资助(5211JX230004) (5211JX230004)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文