| 注册
首页|期刊导航|计算机应用研究|MDKT:融入多维问题难度的自适应知识追踪模型

MDKT:融入多维问题难度的自适应知识追踪模型

李浩君 钟友春

计算机应用研究2024,Vol.41Issue(11):3272-3280,9.
计算机应用研究2024,Vol.41Issue(11):3272-3280,9.DOI:10.19734/j.issn.1001-3695.2024.03.0080

MDKT:融入多维问题难度的自适应知识追踪模型

MDKT:adaptive knowledge tracing model incorporating multidimensional problem difficulty

李浩君 1钟友春1

作者信息

  • 1. 浙江工业大学教育科学与技术学院,杭州 310023
  • 折叠

摘要

Abstract

Knowledge tracing aims to assess learners'mastery of knowledge,but studies have shown that question difficulty is closely related to mastery status.Models that overlook question difficulty struggle to effectively evaluate learners'actual sta-tus.To resolve this issue,this paper developed an MDKT model,incorporating multi-dimensional difficulty.This model em-ployed BERT and CNN to extract semantic difficulty from question texts and integrates question difficulty,conceptual difficulty,and cognitive difficulty to create a multi-dimensional difficulty representation.It constructed an adaptive learning module to capture the interaction between learners and increased exercise difficulty personally.In predicting learners'future perfor-mance,the model used the Transformer's multi-head attention mechanism to focus on the importance of different prediction states.Experimentally,on two real datasets,the MDKT model improved performance by 3.99%~12.06%in AUC and 3.63%~11.15%in ACC,outperforming seven other knowledge tracing models.The results demonstrate the superior per-formance of the model.Furthermore,integrating this model with a knowledge point network graph accurately identifies lear-ners'weak knowledge points,and it confirms the model's feasibility in actual teaching.

关键词

知识追踪/知识掌握状态/问题难度

Key words

knowledge tracing/knowledge mastery status/problem difficulty

分类

信息技术与安全科学

引用本文复制引用

李浩君,钟友春..MDKT:融入多维问题难度的自适应知识追踪模型[J].计算机应用研究,2024,41(11):3272-3280,9.

基金项目

国家自然科学基金资助项目(62077043) (62077043)

浙江省哲学社会科学规划交叉学科重点支持资助项目(22JCXK05Z) (22JCXK05Z)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文