| 注册
首页|期刊导航|计算机应用研究|融合距离阈值和双向TCN的时空注意力行人轨迹预测模型

融合距离阈值和双向TCN的时空注意力行人轨迹预测模型

王红霞 聂振凯 钟强

计算机应用研究2024,Vol.41Issue(11):3303-3310,8.
计算机应用研究2024,Vol.41Issue(11):3303-3310,8.DOI:10.19734/j.issn.1001-3695.2024.04.0103

融合距离阈值和双向TCN的时空注意力行人轨迹预测模型

Fusion of distance threshold and Bi-TCN for spatio-temporal attention pedestrian trajectory prediction model

王红霞 1聂振凯 1钟强1

作者信息

  • 1. 沈阳理工大学信息科学与工程学院,沈阳 110159
  • 折叠

摘要

Abstract

In order to solve the problems such as insufficient interaction modeling and low prediction accuracy due to the lack of partial pedestrian modeling ideas,the lack of global vision in time dimension,and the neglect of the diversity of pedestrian interaction modes,this paper proposed an improved model STG-DTBTA based on Social-STGCNN.Firstly,the model con-structed PPM module,and pruned the pedestrians inter links that were not meet constraints such as distance threshold for de-noising.Secondly,the model introduced the spatio-temporal attention mechanism.Spatial attention dynamically assigned in-teractive weights,and set up multiple attention heads to deal with the interaction diversity problem.Temporal attention cap-tured temporal dependencies of temporal data.Finally,the model used Bi-TCN to increase global perspective to capture dy-namic patterns and trends in trajectory data,and used gating mechanism to incorporate the bidirectional features.The experi-mental results on the datasets ETH and UCY show that compared with Social-STGCNN,ADE and FDE are decreased by an ave-rage of 8%and 16%respectively when the number of parameters and the inference time kept close to it.The STG-DTBTA has good interactive modeling ability,model performance and prediction effect.

关键词

行人轨迹预测/部分行人建模/距离阈值/时空注意力机制/双向TCN/门控机制

Key words

pedestrian trajectory prediction/partial pedestrian model/distance threshold/spatio-temporal attention mecha-nism/bidirectional temporal convolutional network(Bi-TCN)/gating mechanism

分类

信息技术与安全科学

引用本文复制引用

王红霞,聂振凯,钟强..融合距离阈值和双向TCN的时空注意力行人轨迹预测模型[J].计算机应用研究,2024,41(11):3303-3310,8.

基金项目

辽宁省自然科学基金指导计划资助项目(2022-MS-276) (2022-MS-276)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文