| 注册
首页|期刊导航|计算机应用研究|基于改进双重深度Q网络主动学习语义分割模型

基于改进双重深度Q网络主动学习语义分割模型

李林 刘政 南海 张泽崴 魏晔

计算机应用研究2024,Vol.41Issue(11):3337-3342,6.
计算机应用研究2024,Vol.41Issue(11):3337-3342,6.DOI:10.19734/j.issn.1001-3695.2024.02.0070

基于改进双重深度Q网络主动学习语义分割模型

Active learning semantic segmentation model based on improved double deep Q network

李林 1刘政 1南海 1张泽崴 1魏晔1

作者信息

  • 1. 重庆理工大学计算机科学与工程学院,重庆 400054
  • 折叠

摘要

Abstract

This paper proposed an active learning semantic segmentation model named CG_D3QN,based on an improved dual deep Q-network,to address the challenges of acquiring pixel labels and class imbalances in image semantic segmentation tasks.The model used a hybrid network structure that integrates a dueling network architecture with gated recurrent units.This structure alleviated the overestimation of Q-value and efficiently utilized historical state information,thereby improving the ac-curacy and computational efficiency of policy evaluation.On the CamVid and Cityscapes datasets,the model reduced the re-quired sample annotation volume by 65.0%and enhanced the mean intersection over union by approximately 1%to 3%for classes with fewer sample labels.Experimental results show that the model significantly reduces the cost of sample annotations and effectively mitigates class imbalance issues,while being adaptable to different segmentation networks.

关键词

深度强化学习/主动学习/图像语义分割/决斗网络/门控循环单元

Key words

deep reinforcement learning/active learning/image semantic segmentation/dueling network/gate recurrent unit

分类

信息技术与安全科学

引用本文复制引用

李林,刘政,南海,张泽崴,魏晔..基于改进双重深度Q网络主动学习语义分割模型[J].计算机应用研究,2024,41(11):3337-3342,6.

基金项目

重庆市教育委员会科学技术研究项目(KJQN202101149) (KJQN202101149)

重庆市基础研究与前沿探索专项资助项目(CSTB2022NSCQ-MSX0918,CSTB2022NSCQ-MSX0493) (CSTB2022NSCQ-MSX0918,CSTB2022NSCQ-MSX0493)

重庆理工大学研究生创新资助项目(gzlcx20233251) (gzlcx20233251)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文