| 注册
首页|期刊导航|计算机应用研究|改进的分布估计鲸鱼算法求解区块链DAG任务调度问题

改进的分布估计鲸鱼算法求解区块链DAG任务调度问题

徐俊 彭俊丰 汤庸 王记红 蔡伟珊

计算机应用研究2024,Vol.41Issue(11):3364-3369,6.
计算机应用研究2024,Vol.41Issue(11):3364-3369,6.DOI:10.19734/j.issn.1001-3695.2024.04.0094

改进的分布估计鲸鱼算法求解区块链DAG任务调度问题

Improved distribution estimation whale algorithm for block chain DAG task scheduling

徐俊 1彭俊丰 2汤庸 3王记红 1蔡伟珊1

作者信息

  • 1. 广东第二师范学院计算机学院,广州 510303
  • 2. 广东第二师范学院计算机学院,广州 510303||华南师范大学计算机学院,广州 510631
  • 3. 华南师范大学计算机学院,广州 510631
  • 折叠

摘要

Abstract

In order to overcome the efficiency issues of single chain technology in blockchain,a new paradigm directed acyclic graphs is flourishing.This article focused on the non independent task scheduling problem considering cost weights in block-chain directed acyclic graphs,and constructed a mathematical model for task scheduling in blockchain DAG,and proposed a new task scheduling algorithm based on improved distribution estimation whale to solve this problem.The new algorithm intro-duced spatial sampling and statistical learning of EDA in the WO A algorithm to predict the optimal search area,thereby gene-rating excellent new individuals,making the new algorithm have stronger global search ability and faster convergence speed.Finally,through program simulation,it compared the performance of multiple algorithms in terms of convergence speed and glo-bal optimization ability.The experiments show that IEWOA has significant advantages over traditional WO A and EDA in the above parameter performance.In addition,comparing with the improved genetic algorithm FPGA,IEWOA also has certain advantages in parameter performance.

关键词

DAG/分布估计/鲸鱼算法/任务调度

Key words

DAG/distribution estimation/whale algorithm/task scheduling

分类

信息技术与安全科学

引用本文复制引用

徐俊,彭俊丰,汤庸,王记红,蔡伟珊..改进的分布估计鲸鱼算法求解区块链DAG任务调度问题[J].计算机应用研究,2024,41(11):3364-3369,6.

基金项目

国家自然科学基金资助项目(62306079) (62306079)

广东省教育厅普通高校科研平台和科研项目(2021ZDZX3016) (2021ZDZX3016)

广东第二师范学院校级博士人才科研启动专项资助项目(905001900300200033) (905001900300200033)

广东第二师范学院校级教学质量与教学改革工程项目(2021cyxy02) (2021cyxy02)

广东省教育厅高等教育专项资助项目(2022GXJK287) (2022GXJK287)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文