| 注册
首页|期刊导航|计算机应用研究|基于自分块轻量化Transformer的医学图像分割网络

基于自分块轻量化Transformer的医学图像分割网络

张文杰 宋艳涛 王克琪 张越

计算机应用研究2024,Vol.41Issue(11):3502-3508,7.
计算机应用研究2024,Vol.41Issue(11):3502-3508,7.DOI:10.19734/j.issn.1001-3695.2023.11.0634

基于自分块轻量化Transformer的医学图像分割网络

Medical image segmentation network based on self-partitioning lightweight Transformer

张文杰 1宋艳涛 1王克琪 1张越2

作者信息

  • 1. 山西大学 大数据科学与产业研究院 太原 030006||山西大学 计算机与信息技术学院,太原 030006
  • 2. 山西大学 计算机与信息技术学院,太原 030006
  • 折叠

摘要

Abstract

The traditional medical image segmentation network has a large number of parameters and slow computing speed,and cannot applies effectively to the real-time detection technology.To address this issue,this paper proposed a lightweight medical image segmentation network called SPTFormer.Firstly,this network constructed a self-blocking Transformer module,which reshaped the feature map through an adaptive blocking strategy and utilized parallel computing to improve the attention operation speed while paying attention to local detail features.Secondly,this network constructed an SR-CNN module,which used the shift-restored operation to improve the ability to capture local spatial information.By experimenting on ISIC 2018,BUSI,CVC-ClinicDB and 2018 data science bowl,compared with the TransUNet model based on Transformer,the accuracy of the proposed network improves by 4.28%,3.74%,6.50%,and 1.16%,respectively,the GPU computation time reduces by 58%.The proposed network has better performance in medical image segmentation applications,which can well balance the network accuracy and complexity,and provides a new solution for real-time computer-aided diagnosis.

关键词

医学图像分割/轻量化网络/Transformer

Key words

medical image segmentation/lightweight network/Transformer

分类

信息技术与安全科学

引用本文复制引用

张文杰,宋艳涛,王克琪,张越..基于自分块轻量化Transformer的医学图像分割网络[J].计算机应用研究,2024,41(11):3502-3508,7.

基金项目

山西省回国留学人员科研教研资助项目(2023-015) (2023-015)

国家自然科学基金资助项目(61906114) (61906114)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文