| 注册
首页|期刊导航|计算机应用与软件|基于多样化流形学习的非线性矩阵分解数据聚类

基于多样化流形学习的非线性矩阵分解数据聚类

郑淦专 李原浩

计算机应用与软件2024,Vol.41Issue(11):309-318,10.
计算机应用与软件2024,Vol.41Issue(11):309-318,10.DOI:10.3969/j.issn.1000-386x.2024.11.043

基于多样化流形学习的非线性矩阵分解数据聚类

NONLINEAR MATRIX FACTORIZATION DATA CLUSTERING BASED ON MANIFOLD LEARNING

郑淦专 1李原浩2

作者信息

  • 1. 清远职业技术学院信息技术与创意设计学院 广东 清远 511500
  • 2. 长沙理工大学交通工程学院 湖南 长沙 410114
  • 折叠

摘要

Abstract

In order to capture the local geometric structure of multi-faceted data and improve the clustering performance,a nonlinear matrix factorization data clustering method based on manifold learning is proposed.A P-nearest neighbor graph was constructed for each relationship to capture two different types of closely related objects,so as to accurately learn the internal relations and multiple manifolds generated by the internal relations of data.And we stably kept the learned manifold when mapping to a new low dimensional data space with nonlinear matrix factorization.The clustering results of multiple data sets show that the method can fully mine the partial representation of various related types,and has certain advantages in accuracy and efficiency.

关键词

多面数据/聚类/流形学习/P近邻图

Key words

Multi-faceted data/Clustering/Manifold learning/P nearest neighbor graph

分类

信息技术与安全科学

引用本文复制引用

郑淦专,李原浩..基于多样化流形学习的非线性矩阵分解数据聚类[J].计算机应用与软件,2024,41(11):309-318,10.

基金项目

湖南省自然科学基金重大项目(2015JJ2004). (2015JJ2004)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文