| 注册
首页|期刊导航|计算机应用与软件|基于混合二进制灰狼算法的入侵检测特征选择方法

基于混合二进制灰狼算法的入侵检测特征选择方法

胡琦渊 赵志衡 罗思婕 刘勇

计算机应用与软件2024,Vol.41Issue(11):350-357,8.
计算机应用与软件2024,Vol.41Issue(11):350-357,8.DOI:10.3969/j.issn.1000-386x.2024.11.048

基于混合二进制灰狼算法的入侵检测特征选择方法

INTRUSION DETECTION FEATURE SELECTING METHOD BASED ON HYBRID BINARY GREY WOLF OPTIMIZATION

胡琦渊 1赵志衡 1罗思婕 1刘勇1

作者信息

  • 1. 哈尔滨工业大学电气工程及自动化学院 黑龙江 哈尔滨 150001
  • 折叠

摘要

Abstract

In order to reduce the negative impact of data set's redundant features on classifier's training speed and detection accuracy,which is used for intrusion detection,the binary gray wolf optimization(BGWO)mutation probability is analyzed and its mutation related vector's expression is reconstructed,improving BGWO's mutation mechanism,speeding up feature dimensionality reduction,and reducing classifier's training time.In addition,the iterative decision-making form of PSO was integrated,enhancing BGWO's optimization capabilities.Hybrid BGWO was adopted for wrapped feature selection,making data set's feature structure more suitable for the decision tree classifier.The NSL-KDD data set tests show that this method has good detection accuracy for DoS,Probe attack traffic,and is suitable for data sets with balanced data distribution.

关键词

二进制灰狼算法/特征选择/入侵检测/决策树

Key words

Binary grey wolf optimization/Feature selection/Intrusion detection system/Decision tree

分类

信息技术与安全科学

引用本文复制引用

胡琦渊,赵志衡,罗思婕,刘勇..基于混合二进制灰狼算法的入侵检测特征选择方法[J].计算机应用与软件,2024,41(11):350-357,8.

基金项目

2020年工业互联网创新发展工程项目(TC200H037). (TC200H037)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文