快速序列视觉呈现目标检测的脑区特征解析OACSTPCD
Neural region features of rapid serial visual presentation(RSVP)for target detection
目的 探讨基于快速序列视觉呈现(RSVP)脑机接口(BCI)的目标检测任务中,6种目标隐匿条件下5个脑区(前额区、颞区、中央区、顶区和枕区)的事件相关电位(ERP)特征及目标检测精度的差异.方法 选取12例受试者为研究对象,利用NeuroScan SynAmps2脑电采集系统采集6种隐匿条件下受试者的头皮脑电信号,比较5个脑区的ERP波形、P300幅值、潜伏期等ERP特征;结构化判决成分分析算法(HDCA)对脑电信号进行分类并评估不同脑区间分类精度的差异.结果 (1)在6种隐匿条件下,目标图片在5个脑区均诱发出明显的ERP波形;(2)对于P300幅值,颞区最小;(3)对于P300潜伏期,顶区和中央区长于其他脑区(除外小伪装和小遮挡条件);(4)对于分类精度,顶区和中央区高于其他脑区(除外大伪装条件).结论 顶区和中央区通道的选择可以为提升基于RSVP-BCI的隐匿目标检测性能提供新的视角,并有望为小型化、简易、可穿戴BCI设备的研究设计拓宽思路.
Objective To study the differences in features of event-related potentials(ERPs)and target detection accuracy between five brain regions(frontal,temporal,central,parietal,and occipital)in target detection tasks based on rapid serial visual presentation(RSVP)brain computer interface(BCI)under six target concealment conditions.Methods Twelve participants were selected for the study,whose scalp electroencephalogram(EEG)signals were collected under the six concealment conditions using a NeuroScan SynAmps2 EEG acquisition system.The ERP waveforms,P300 amplitudes and latencies,among other things,were compared across the five brain regions.The hierarchical discriminant component analysis(HDCA)algorithm was used to classify the EEG signals while the differences in classification accuracy were probed across the five brain regions.Results(1)Under the six concealment conditions,target images elicited distinct ERP waveforms in all the five brain regions;(2)For P300 amplitudes,the temporal region exhibited the smallest values;(3)Regarding P300 latencies,the parietal and central regions showed longer durations than other brain regions(except for small camouflage and small occlusion conditions);(4)In terms of classification accuracy,the parietal and central regions outperformed other brain regions(except for the large camouflage condition).Conclusion The selection of parietal and central channels can offer a new perspective for enhancing the performance in concealed target detection based on RSVP-BCI,and is expected to spark new ideas for the design of miniaturized,simple and wearable BCI devices.
周谦;王保增;袁子健;杨洋;李斯伟;周瑾;王常勇
军事科学院军事医学研究院,北京 100850军事科学院军事医学研究院,北京 100850军事科学院军事医学研究院,北京 100850军事科学院军事医学研究院,北京 100850军事科学院军事医学研究院,北京 100850军事科学院军事医学研究院,北京 100850||北京脑科学与类脑研究所,北京 102206军事科学院军事医学研究院,北京 100850
基础医学
快速序列视觉呈现隐匿条件目标检测事件相关电位脑机接口
rapid serial visual presentationconcealment conditionstarget detectionevent-related potentialbrain computer interface
《军事医学》 2024 (10)
744-752,9
国家自然科学基金国家重大科研仪器研制项目(82327810)"脑科学与类脑研究"重大项目(2021ZD0201600,2021ZD0201604)北京市科技新星计划(Z201100006820144)
评论