| 注册
首页|期刊导航|流体机械|基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究

基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究

何明 方燚 孙瑞亮 李豪 刘世成 范文俊 闫慧敏 舒悦

流体机械2024,Vol.52Issue(11):72-78,7.
流体机械2024,Vol.52Issue(11):72-78,7.DOI:10.3969/j.issn.1005-0329.2024.11.010

基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究

Research on fault feature extraction method for reciprocating compressor piston rod settlement signal based on MOMEDA and LMD

何明 1方燚 1孙瑞亮 1李豪 1刘世成 1范文俊 1闫慧敏 1舒悦1

作者信息

  • 1. 合肥通用机械研究院有限公司,合肥 230031||高端压缩机及系统技术全国重点实验室,合肥 230031
  • 折叠

摘要

Abstract

In response to the shortage of insufficient reliability of traditional empirical mode decomposition(EMD)methods in the current fault diagnosis of reciprocating compressor piston rods,this paper obtains the settlement signal of reciprocating compressor piston rods through eddy current sensors,uses multipoint optimal minimum entropy deconvolution algorithm(MOMEDA)to adaptively adjust the signal period to eliminate interference,and then performs local mean decomposition(LMD)on it to obtain the characteristic parameter factors of multiple product function(PF)components corresponding to the signal,including skewness coefficient gi,kurtosis coefficient qi,and total energy ratio Ei/E.Comparing the changes in characteristic parameters of the piston rod under normal and faulty conditions(support ring wear,loose fastening components,and early cracks),the results show that under the condition of piston rod support ring wear,the values of g1 and q3 will reach around-0.02 and 1.60,respectively,which is 3~5 times different from the normal values;When the fastening components of the piston rod are loose,g1,g3,q1,q3 will all show significant deviations,even exceeding the normal value by more than 10 times;In the case of early cracks in the piston rod,there will be some changes in the low order components g4 and q4,reaching around-1.30 and 1.60,respectively;The combination of MOMEDA and LMD method can accurately and effectively judge the settlement signal of reciprocating compressor piston rod.Compared with the traditional EMD signal analysis method,this method has shown higher practicality in the field of piston rod fault diagnosis.

关键词

多点最优最小熵解卷积算法/局部均值分解/经验模态分解/故障诊断/往复压缩机/活塞杆

Key words

MOMEDA/LMD/EMD/fault diagnosis/reciprocating compressor/piston rod

分类

机械制造

引用本文复制引用

何明,方燚,孙瑞亮,李豪,刘世成,范文俊,闫慧敏,舒悦..基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究[J].流体机械,2024,52(11):72-78,7.

基金项目

国家重点研发计划项目(2022YFB4003404) (2022YFB4003404)

流体机械

OA北大核心CSTPCD

1005-0329

访问量0
|
下载量0
段落导航相关论文