| 注册
首页|期刊导航|太赫兹科学与电子信息学报|基于改进Faster R-CNN的高铁扣件弹条缺陷检测

基于改进Faster R-CNN的高铁扣件弹条缺陷检测

梁楠 张伟 刘洋龙 荆海林

太赫兹科学与电子信息学报2024,Vol.22Issue(11):1221-1227,1269,8.
太赫兹科学与电子信息学报2024,Vol.22Issue(11):1221-1227,1269,8.DOI:10.11805/TKYDA2023253

基于改进Faster R-CNN的高铁扣件弹条缺陷检测

Fastener clips defect detection based on improved Faster R-CNN in high-speed railway

梁楠 1张伟 1刘洋龙 2荆海林1

作者信息

  • 1. 河南省科学院 应用物理研究所有限公司,河南 郑州 450000
  • 2. 重庆邮电大学 自动化学院,重庆 400065
  • 折叠

摘要

Abstract

In response to the difficulty in detecting defects in high-speed rail clip springs caused by complex lighting environments,an improved Faster Region Convolutional Neural Networks(R-CNN)-based defect detection method for clip springs is proposed.By extracting defect feature maps through multi-layer convolutional neural networks,the network's attention to defect features is enhanced,and the impact of interference from complex lighting environments is reduced.A region proposal network is designed to generate candidate regions,and based on these regions,pooling is performed to extract the corresponding specific defect locations in the feature maps.The fully connected layers of the region proposal network are employed to calculate the specific categories and precise locations of defects,yielding the final detection results.The proposed algorithm can fully suppress the interference of lighting environments,significantly enhance the representation ability of defect features,simplify the image pre-processing stage,and reduce the requirements for the quality of the original image.Experimental results show that the proposed algorithm can effectively detect defects in high-speed rail clip springs,and compared to existing algorithms,it has a higher accuracy,stronger robustness,and significantly improved computational efficiency.

关键词

缺陷检测/扣件弹条/区域卷积神经网络/区域候选网络/图像噪声

Key words

defect detection/fastener spring clips/region-based convolutional neural networks/region proposal network/image noise

分类

信息技术与安全科学

引用本文复制引用

梁楠,张伟,刘洋龙,荆海林..基于改进Faster R-CNN的高铁扣件弹条缺陷检测[J].太赫兹科学与电子信息学报,2024,22(11):1221-1227,1269,8.

基金项目

河南省科学院科技开放合作基金资助项目(210907008) (210907008)

河南省科技攻关基金资助项目(232102210056) (232102210056)

河南省科技研发计划联合基金资助项目(235200810049) (235200810049)

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文