首页|期刊导航|信息与控制|基于多通道Retinex模型的低照度图像增强网络

基于多通道Retinex模型的低照度图像增强网络OA北大核心CSTPCD

Low-light Image Enhancement Network Based on Multichannel Retinex Model

中文摘要英文摘要

低照度图像增强是近年计算机视觉领域的研究热点之一,在目标检测、自动驾驶、夜间监控等领域具有广泛的应用价值.本文分析了同一场景在不同曝光下所得到的图像的像素值分布,发现其低照度图像与正常光照图像在RGB三通道的增强比具有一定差异.基于这一现象,提出了一种基于多通道Retinex模型的低照度图像增强网络.为获得更准确的初始化光照和反射分量,设计了初始化模块.为解决低照度增强后存在的色偏问题,在光照增强模块中采用了分通道增强的策略,设计了针对性的颜色损失函数,并通过对抗性损失函数来提升生成图片的质量.在两种公开数据集上进行了实验,本文方法与现有的先进算法进行对比并取得了较好的结果.与次优的方法相比,本文方法得到的增强图像与参考图像之间的峰值信噪比提高了 20%,结构相似性提高7.2%,且消除了图像中的噪声,与参考图像在数值指标和视觉效果上都更为接近.

Low-light image enhancement has been one of the hottest research fields of computer vision in recent years.It has many applications in object detection,autonomous driving,and night monito-ring.The pixel value distribution of images obtained from the same scene is analyzed under different exposures.It finds differences in the growth ratio of its low-light and normal-illumination images in RGB three channels.Based on this observation,a low-light image enhancement network is proposed on the basis of multi-channel Retinex model.In order to solve the problem of color de-viation after low-light enhancement,a multi-channel enhancement strategy is adopted in the light enhancement module,and a targeted color loss function is designed,which improves the quality of generated pictures through the antagonistic loss function.Experimental results show that the peak signal-to-noise ratio between the enhanced image and the reference image is improved by 20%by the proposed method in comparison with the existing advanced algorithms through experiments on two public datasets,and structural similarity is improved by 7.2%.The noise of image is elimina-ted,and it is closer to the reference image in terms of numerical indicators and visual effects.

张箴;鹿阳;苏奕铭;唐延东;田建东

中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院大学,北京 100049中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院大学,北京 100049中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016||中国科学院大学,北京 100049中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016

计算机与自动化

低照度图像增强光照分解Retinex 模型

low-light image enhancementillumination decompositionRetinex model

《信息与控制》 2024 (5)

652-661,672,11

国家自然科学基金(U2013210)

10.13976/j.cnki.xk.2024.3305

评论