| 注册
首页|期刊导航|信息与控制|基于注意力机制和空洞金字塔池化的缺陷检测

基于注意力机制和空洞金字塔池化的缺陷检测

魏金洋 苑明哲 曹飞道 白海军 王文洪

信息与控制2024,Vol.53Issue(5):662-672,11.
信息与控制2024,Vol.53Issue(5):662-672,11.DOI:10.13976/j.cnki.xk.2024.3148

基于注意力机制和空洞金字塔池化的缺陷检测

Defect Detection Based on Attention Mechanism and Atrous Pyramid Pooling

魏金洋 1苑明哲 2曹飞道 3白海军 4王文洪3

作者信息

  • 1. 沈阳化工大学信息工程学院,辽宁沈阳 110142||广州工业智能研究院,广东 广州 511458
  • 2. 广州工业智能研究院,广东 广州 511458||中国科学院沈阳自动化研究所,辽宁沈阳 110016
  • 3. 广州工业智能研究院,广东 广州 511458
  • 4. 沈阳化工大学信息工程学院,辽宁沈阳 110142
  • 折叠

摘要

Abstract

To solve the problem of low feature reconstruction accuracy in industrial product surface defect detection,which leads to high false positive rates at the image,pixel,and region levels,we pro-pose an unsupervised defect detection method with improved deep feature reconstruction(DFR).First,we introduce jump connections into the feature reconstruction process to improve the feature reconstruction accuracy and the ability of the model to reconstruct positive sample features.Sec-ond,we introduce an attention mechanism to improve the attention of the algorithm to defect re-gions and explore the effect of spatial attention on defect detection for different targets.Third,we introduce atrous pyramid pooling into the feature reconstruction module to capture context at multi-ple scales without increasing the number of parameters to improve the ability of the model to detect defects at different scales.Finally,we use the L2-SSIM loss function to constrain feature recon-struction to preserve the feature structure while maintaining pixel similarity.The proposed algo-rithm achieves 97.5%,97.2%,and 93.1%detection accuracy at the image,pixel,and region levels,respectively,outperforming the comparison algorithm.

关键词

图像处理/缺陷检测/无监督学习/注意力机制/空洞金字塔池化

Key words

image processing/defect detection/unsupervised learning/attention mechanism/atrous pyramid pooling

分类

信息技术与安全科学

引用本文复制引用

魏金洋,苑明哲,曹飞道,白海军,王文洪..基于注意力机制和空洞金字塔池化的缺陷检测[J].信息与控制,2024,53(5):662-672,11.

基金项目

中国科学院科技服务网络计划(STS)—东莞专项(20211600200072) (STS)

信息与控制

OA北大核心CSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文