| 注册
首页|期刊导航|信息与控制|结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法

结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法

邱云飞 王月洋

信息与控制2024,Vol.53Issue(5):673-688,16.
信息与控制2024,Vol.53Issue(5):673-688,16.DOI:10.13976/j.cnki.xk.2024.3203

结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法

Automatic Liver Tumor Segmentation Method Integrating Multi-branch Texture Feature Extraction and Attention Mechanism

邱云飞 1王月洋1

作者信息

  • 1. 辽宁工程技术大学软件学院,辽宁葫芦岛 125105
  • 折叠

摘要

Abstract

To address the issues of fuzzy boundaries,diverse tumor types,low contrast with surrounding tissues in computerized tomography(CT)images,as well as insufficient utilization of texture infor-mation in existing networks for medical images,an automatic liver tumor segmentation method that combines multi-branch texture feature extraction and attention mechanism is proposed.Firstly,a parallel convolutional encoder is designed to replace the dual convolutional modules in the U-Net baseline network,aiming to extract superficial features under two different receptive fields.Sec-ondly,a texture feature extraction network is introduced in the skip-connection part of the U-Net to extract deep texture information of liver tumors at multiple scales.Finally,a channel attention module with a residual path is incorporated in the decoding stage to effectively capture inter-chan-nel dependencies and enhance the relevant features for liver tumor segmentation tasks.The proposed method is evaluated on the LiTS2017 and 3DIRDCADb-01 liver tumor segmentation datasets.Experimental results demonstrate superiority of the proposed method in terms of evaluation metrics and visualizations in comparison with the baseline methods,which shows advantages in segmenting small-sized and blurry boundary tumors,providing promising insights for liver tumor screening.

关键词

图像处理/肝脏肿瘤/U-Net/并行卷积/纹理特征/注意力机制

Key words

image processing/liver tumor/U-Net/parallel convolution/texture feature/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

邱云飞,王月洋..结合多分支纹理特征提取和注意力机制的肝脏肿瘤自动分割方法[J].信息与控制,2024,53(5):673-688,16.

基金项目

国家自然科学基金(62173171,61404069) (62173171,61404069)

辽宁省自然科学基金(2015020095) (2015020095)

辽宁省教育厅科学技术研究项目(LJYL051) (LJYL051)

信息与控制

OA北大核心CSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文