|国家科技期刊平台
首页|期刊导航|移动通信|基于深度学习的海洋色散信道信号处理研究

基于深度学习的海洋色散信道信号处理研究OA

Signal Processing for Marine Dispersive Channels Based on Deep Learning

中文摘要英文摘要

海洋非均匀介质构成的海底信道中,电磁波色散现象会产生明显的频域谐波特征.然而,传统谱线检测方法通常只关注单一谱线的识别而未能对谐波特征进行全局分析,且谱线能量的分散导致传统检测方法的性能显著下降.为了克服这些挑战,提出了一种基于先验霍夫增强的卷积神经网络检测方法,利用霍夫变换对谱线进行预定位,并借助深度学习的全局视野与强大特征学习能力,实现了对色散现象特征的准确检测,显著提升了检测性能.

In marine channels formed by non-uniform media,electromagnetic wave dispersion results in distinct harmonic characteristics in the frequency domain.However,traditional spectral line detection methods typically focus on identifying individual spectral lines without a global analysis of harmonic characteristics,and the dispersion of spectral line energy leads to significant performance degradation of these traditional methods.To overcome these challenges,a convolutional neural network(CNN)detection method based on prior Hough enhancement is proposed.This method utilizes the Hough transform for spectral line pre-localization,and leverages the global perspective and powerful feature learning capabilities of deep learning to achieve accurate detection of dispersion characteristics,significantly improving detection performance.

刘子玄;陈智勇;余白石;钱良

上海交通大学,上海 200240上海交通大学,上海 200240||汉江实验室,湖北 武汉 430060

电子信息工程

非均匀介质色散现象谐波特征霍夫变换卷积神经网络

non-uniform mediumdispersion phenomenaharmonic characteristicsHough transformconvolutional neural network

《移动通信》 2024 (011)

57-62 / 6

国家重点研发计划项目"高性能海洋电场传感器设计与研制"(2022YFC3104001);国家自然科学基金优秀青年科学基金项目"移动计算通信网络理论与方法"(62222111)

10.3969/j.issn.1006-1010.20240927-0001

评论