| 注册
首页|期刊导航|燕山大学学报|基于图像处理的球笼防尘罩缺陷检测方法

基于图像处理的球笼防尘罩缺陷检测方法

苏连成 李佳伟 丁伟利

燕山大学学报2024,Vol.48Issue(6):511-518,8.
燕山大学学报2024,Vol.48Issue(6):511-518,8.DOI:10.3969/j.issn.1007-791X.2024.06.005

基于图像处理的球笼防尘罩缺陷检测方法

Defect detection method of automobile constant velocity joint boots based on image processing

苏连成 1李佳伟 1丁伟利1

作者信息

  • 1. 燕山大学 电气工程学院,河北 秦皇岛 066004||燕山大学 河北省智能康复及神经调控重点实验室,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

A real-time defect detection method based on image processing is proposed to address the low efficiency of manual inspection for internal burr defects in the small opening of automobile constant velocity joint boots,thereby automating the quality inspection process and improving production efficiency.First,a series of non-parametric image preprocessing methods are applied to ensure that the original image meets the conditions for edge extraction.Second,a heuristic edge search algorithm is used to obtain the internal edge coordinates of the small opening.Third,the least squares algorithm is employed to fit an ellipse parametric equation,which is then used to calculate the coordinates of matching points.Finally,the presence of internal burr defects in the material is determined by comparing the similarity between the image edges and the fitted ellipse.The experimental results show that the algorithm achieves a 100%detection accuracy on the actual test dataset,and it fully enables real-time detection of internal burr defects in the small opening.

关键词

缺陷检测/图像处理/椭圆检测/最小二乘算法

Key words

defect detection/image processing/ellipse detection/least squares

分类

信息技术与安全科学

引用本文复制引用

苏连成,李佳伟,丁伟利..基于图像处理的球笼防尘罩缺陷检测方法[J].燕山大学学报,2024,48(6):511-518,8.

基金项目

河北省自然科学基金重点项目(F2021203054) (F2021203054)

河北省创新能力提升计划项目(22567619H) (22567619H)

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文