| 注册
首页|期刊导航|燕山大学学报|基于大核分离和通道先验卷积注意的PCB缺陷检测方法

基于大核分离和通道先验卷积注意的PCB缺陷检测方法

李扬 陈伟 杨清永 李现国 徐常余 徐晟

燕山大学学报2024,Vol.48Issue(6):519-527,549,10.
燕山大学学报2024,Vol.48Issue(6):519-527,549,10.DOI:10.3969/j.issn.1007-791X.2024.06.006

基于大核分离和通道先验卷积注意的PCB缺陷检测方法

A PCB defect detection method based on large kernel separation and channel prior convolution attention

李扬 1陈伟 2杨清永 2李现国 3徐常余 3徐晟2

作者信息

  • 1. 天津中德应用技术大学 软件与通信学院,天津 300350||天津工业大学 电子与信息工程学院,天津 300387||天津市光电检测技术与系统重点实验室,天津 300387
  • 2. 天津中德应用技术大学 软件与通信学院,天津 300350
  • 3. 天津工业大学 电子与信息工程学院,天津 300387||天津市光电检测技术与系统重点实验室,天津 300387
  • 折叠

摘要

Abstract

Addressing the issues of small defect size,complex form,and low discriminability in printed circuit boards that lead to low detection accuracy and high false positive rates,a PCB defect detection method based on large kernel separation and channel prior convolutional attention is proposed.First,combining multi-scale feature extraction and spatial convolution attention mechanism,large kernel separation spatial pyramid pooling is proposed to enhance the multi-scale feature integration ability and modeling capability of the model.Second,the P2 small object detection layer is constructed in the neck network to enable the model to learn richer and more robust feature representations.The introduction of channel prior convolutional attention modules dynamically distributes attention weights along both the channel and spatial dimensions,retaining channel prior information while effectively extracting spatial relationships,thereby enhancing the detection accuracy of small object defects in the model.The experimental results indicate that the mAP of the proposed method on the PKU-Market-PCB dataset reached 98.6%,outperforming the baseline model YOLOv8n by 3.4%.The precision is improved by 2.6%,and the recall is increased by 4.6%.The inference time per image is only 4.1 ms,making it suitable for real-time detection.In summary,this method significantly enhances the accuracy and real-time performance of printed circuit board defect detection,providing high practical application value.

关键词

缺陷检测/印刷电路板/YOLOv8/大核分离/注意力机制

Key words

defect detection/printed circuit boards/YOLOv8/large kernel separation/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

李扬,陈伟,杨清永,李现国,徐常余,徐晟..基于大核分离和通道先验卷积注意的PCB缺陷检测方法[J].燕山大学学报,2024,48(6):519-527,549,10.

基金项目

国家自然科学基金资助项目(52271341) (52271341)

天津市科技计划项目(24YDTPJC00410) (24YDTPJC00410)

河北省高等学校科学技术研究项目(ZD2021037) (ZD2021037)

江苏省重点实验室对外开放课题资助项目(zdsys2019-11) (zdsys2019-11)

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文