基于用户响应意愿度三维Sigmoid云模型的电动汽车优化调度策略OA北大核心CSTPCD
Optimal Scheduling Strategy for Electric Vehicles Based on User Response Willingness Three Dimensional Sigmoid Cloud Model
电动汽车(electric vehicle,EV)车主响应调度的意愿存在较大的不确定性,这给电动汽车的优化调度带来巨大的挑战.为此,该文提出一种基于用户响应意愿度三维Sigmoid云模型的分时段EV优化调度策略.首先,根据Hampel准则分析各历史日EV充电负荷概率密度函数间的Copula熵辨识出历史相关日,以强相关日的出行概率分布经BP神经网络预测车辆的停驻时间和荷电状态概率分布;其次,为描述受多重因素影响下 EV 用户的响应意愿,建立三维Sigmoid云模型从而刻画EV用户的价格收益和时间裕度对响应意愿的不确定映射关系;最后,基于响应意愿灵敏度将不同的响应意愿剥离后对应至相应的充电调度区间,以最小化配电网的负荷波动和调度费用为目标对 EV 进行分时段优化调度.仿真结果表明,相比传统方法,所提三维Sigmoid云模型量化了EV响应行为的不确定性,均方根误差减小约35%,在满足用户用车需要和响应意愿的同时使配电网负荷波动率降低11.28%.
There is a considerable uncertainty about the willingness of electric vehicle(EV)owners to respond to scheduling,which brings great challenges to the optimal scheduling of electric vehicles.Therefore,a three-dimensional Sigmoid cloud model of user response willingness is proposed to obtain the time-phased EV optimal scheduling strategy.First,the Copula entropy between the probability density functions of EV charging load for each historical day is analyzed in accordance with Hampel's criterion to identify the historical correlation days.The probability distribution of vehicle parking time and charging state is predicted by BP neural network on the basis of the travel probability distribution of strongly correlated days.Second,for the goal of describing the response willingness of EV users under the influence of multiple factors,a three-dimensional Sigmoid cloud model is developed to depict the uncertain mapping relationship of EV users'price gain and time margin on response willingness.Finally,based on the sensitivity of response willingness,different response willingness is stripped down to correspond charging scheduling intervals,and EVs are optimally scheduled in time with the aim of minimizing the load fluctuation and schedule cost of the distribution network.Simulation result shows that the proposed three-dimensional Sigmoid cloud model quantifies the uncertainty of EV response behavior and reduces the root-mean-square error by about 35%compared with the traditional method.Moreover,the load fluctuation rate of the distribution network is decreases by 11.28%while satisfying the vehicle needs of users and their response willingness.
葛晓琳;胡文哲;符杨;曹士鹏
海上风电技术教育部工程研究中心(上海电力大学海上风电研究院),上海市 杨浦区 200090上海电力大学电气工程学院,上海市 杨浦区 200090
动力与电气工程
电动汽车Sigmoid云模型优化调度响应意愿
electric vehiclessigmoid cloud modeloptimal schedulingwillingness to respond
《中国电机工程学报》 2024 (022)
8874-8883,中插15 / 11
国家自然科学基金项目(52077130);上海市青年科技启明星计划(21QA1403500);上海绿色能源并网工程技术研究中心(13DZ2251900). Project Supported by National Natural Science Foundation of China(52077130);Shanghai Rising-Star Program(21QA1403500);Shanghai Engineering Research Center of Green Energy Grid-Connected Technology(13DZ2251900).
评论