| 注册
首页|期刊导航|电机与控制应用|基于灰狼优化的改进粒子群算法求解环境经济调度问题

基于灰狼优化的改进粒子群算法求解环境经济调度问题

刘虹伶 时维国

电机与控制应用2024,Vol.51Issue(11):97-108,中插10,13.
电机与控制应用2024,Vol.51Issue(11):97-108,中插10,13.DOI:10.12177/emca.2024.125

基于灰狼优化的改进粒子群算法求解环境经济调度问题

Solving Environmental Economic Dispatch Problem Using an Improved Particle Swarm Optimization Algorithm Based on Grey Wolf Optimization

刘虹伶 1时维国1

作者信息

  • 1. 大连交通大学 电气工程学院,辽宁 大连 116028
  • 折叠

摘要

Abstract

[Objective]To effectively solve the environmental economic dispatch problem in power systems,this paper proposed an improved particle swarm optimization(PSO)algorithm based on grey wolf optimization(GWO)to optimize both the fuel costs and pollutant emissions.[Methods]First,the refracted opposition-based learning of refraction was applied to the initial particle swarm to generate inverse solutions,hereby enhancing population diversity.During the algorithm's iteration process,the GWO algorithm was combined with PSO to guide the elite individuals in the particle swarm to conduct optimal searches,improving PSO's optimization capability and convergence accuracy.In the later stages of the algorithm,to address the drawback where the particle swarm easily fell into local optima,Tent chaotic mapping was used to perturb the optimal particles.The individual best and global best positions of the particle swarm were then updated based on the fitness values.[Results]The improved algorithm was applied to 6-unit and 40-unit generator systems with different load demands.The convergence curves of the proposed algorithm,PSO algorithm.And GWO algorithm were compared for solving the power system,and the results showed that the proposed improved algorithm converged to the optimal value more quickly and resulted in the lowest fuel cost.[Conclusion]The improved algorithm proposed in this paper effectively solves complex constrained optimization problems and performs well in optimization accuracy and stability.

关键词

粒子群优化/折射反向学习/灰狼优化/混沌映射/环境经济调度

Key words

particle swarm optimization/refracted opposition-based learning/grey wolf optimization/chaotic mapping/environmental economic dispatch

分类

信息技术与安全科学

引用本文复制引用

刘虹伶,时维国..基于灰狼优化的改进粒子群算法求解环境经济调度问题[J].电机与控制应用,2024,51(11):97-108,中插10,13.

基金项目

辽宁省教育厅科学研究项目(LJKMZ20220828,LJKZ0489) (LJKMZ20220828,LJKZ0489)

四川省重点实验室开放基金项目(2020RYJ04)The Scientific Research Project of Liaoning Education Department of China(LJKMZ20220828,LJKZ0489) (2020RYJ04)

The Sichuan Key Laboratory of Artificial Intelligence Open Fund(2020RYJ04) (2020RYJ04)

电机与控制应用

OACSTPCD

1673-6540

访问量0
|
下载量0
段落导航相关论文