| 注册
首页|期刊导航|安全与环境工程|基于NMI-SS-FOA优化极限学习机的隧道变形预测模型

基于NMI-SS-FOA优化极限学习机的隧道变形预测模型

姜平 徐剑波 杨熙 许文军 任若微 罗学东

安全与环境工程2024,Vol.31Issue(6):48-56,9.
安全与环境工程2024,Vol.31Issue(6):48-56,9.DOI:10.13578/j.cnki.issn.1671-1556.20231272

基于NMI-SS-FOA优化极限学习机的隧道变形预测模型

Prediction model of tunnel deformation based on NMI-SS-FOA optimized extreme learning machine

姜平 1徐剑波 1杨熙 2许文军 1任若微 1罗学东2

作者信息

  • 1. 中国一冶集团有限公司,湖北 武汉 430081
  • 2. 中国地质大学(武汉)工程学院,湖北 武汉 430074
  • 折叠

摘要

Abstract

To ensure that tunnel construction meets the requirements of safety,cost-effectiveness,and efficiency,accurate prediction of tunnel deformation is necessary.Considering the nonlinearity and time-series characteristics of tunnel deformation data,this paper proposes a tunnel deformation prediction model based on NMI-SS-FOA optimized extreme learning machine(ELM).The model first used the normalized mutual information(NMI)method to screen key parameters affecting tunnel deformation,and then used the SS-FOA-ELM which is optimized by the fruit fly algorithm with sector search mechanism to predict tunnel deformation,comparing the prediction results with those of statistical prediction methods random forest method,BP neural network model,ELM model,and support vector regression(SVR)model.The research results show that the tunnel deformation prediction model based on NMI-SS-FOA optimized ELM can effectively predict tunnel deformation.The corresponding root mean square error(ERMSE),mean absolute percentage error(ERMSE),a10 index(a10),and coefficient of determination(R2)are 5.06,19.42%,0.932,and 0.607,respectively,indicating better prediction performance than other models.The thickness of the covering layer(H),the cohesion of the rock mass(Crm),and the internal friction angle of the rock mass(ϕrm)have a significant impact on the prediction results.The research results can provide reference for the prediction and control of tunnel deformation caused by tunnel construction.

关键词

隧道工程/变形预测/优化算法/极限学习机/归一化互信息法

Key words

tunnel engineering/deformation prediction/optimization algorithm/extremelearning machine/normalized mutual information method

分类

资源环境

引用本文复制引用

姜平,徐剑波,杨熙,许文军,任若微,罗学东..基于NMI-SS-FOA优化极限学习机的隧道变形预测模型[J].安全与环境工程,2024,31(6):48-56,9.

基金项目

国家自然科学基金项目(42072309) (42072309)

安全与环境工程

OA北大核心CSTPCD

1671-1556

访问量0
|
下载量0
段落导航相关论文