| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于物理驱动深度学习的结构形状优化设计

基于物理驱动深度学习的结构形状优化设计

唐和生 李度 廖洋洋 李荣帅

湖南大学学报(自然科学版)2024,Vol.51Issue(11):33-42,10.
湖南大学学报(自然科学版)2024,Vol.51Issue(11):33-42,10.DOI:10.16339/j.cnki.hdxbzkb.2024105

基于物理驱动深度学习的结构形状优化设计

Structural Shape Optimization Design Based on Physics-Informed Deep Learning

唐和生 1李度 1廖洋洋 1李荣帅2

作者信息

  • 1. 同济大学 土木工程学院,上海 200092
  • 2. 上海建工集团股份有限公司,上海 200080
  • 折叠

摘要

Abstract

The optimization design of structural shapes is fundamentally a problem of solving functional extremum.Traditional variational methods often encounter challenges,such as limited functional types and oscillation in the solution process when solving high-dimensional functional extreme value problems.In this paper,a functional extremum numerical solution method based on physics-informed deep learning(PIDL)is proposed by using the high-dimensional nonlinear mapping ability of deep learning model.The method first embeds the physical information(control equations,initial conditions and boundary conditions,etc.)of the shape optimization problem as regularization terms into the deep learning model,and a loss function based on the objective functional extremum is constructed.Then,a random gradient descent algorithm is used to train the deep learning model,further realizing the solution of functional extremum and optimization design of structural shape.The proposed method is verified through numerical examples of optimizing the shape of surfaces and arch axes,and a comparative analysis is conducted with the computational results obtained from genetic algorithms.The results demonstrate that the method has high prediction accuracy and efficiency for the target task of small samples.As a non-parametric modeling technology,the method is of great significance for solving engineering problems characterized by high data acquisition costs and data collection challenges.

关键词

物理驱动深度学习/形状优化设计/泛函极值/遗传算法

Key words

physics-informed deep learning/shape optimization design/functional extremum/genetic algorithm

分类

建筑与水利

引用本文复制引用

唐和生,李度,廖洋洋,李荣帅..基于物理驱动深度学习的结构形状优化设计[J].湖南大学学报(自然科学版),2024,51(11):33-42,10.

基金项目

国家自然科学基金资助项目(52378184),National Natural Science Foundation of China(52378184) (52378184)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文