首页|期刊导航|木材科学与技术|基于木材纹理图像和改进ResNet50_DTPE模型的5种红木树种识别方法

基于木材纹理图像和改进ResNet50_DTPE模型的5种红木树种识别方法OA北大核心CSTPCD

Identification Method for Five Hongmu Species Based on Wood Texture Images and an Improved ResNet50_DTPE Model

中文摘要英文摘要

针对5种常用于家具的红木用材树种:刺猬紫檀(Pterocarpus erinaceus Poir.)、大果紫檀(Pterocarpus macrocarpus Kurz)、交趾黄檀(Dalbergia cochinchinensis Pierre)、阔叶黄檀(Dalbergia latifolia Roxb.)和微凹黄檀(Dalbergia retusa Hemsl.),基于残差网络(residual network 50,ResNet50)与详细纹理感知引擎(detailed texture perception engine,DTPE)的改进注意力机制算法,提出一种新型木材纹理识别模型,获得快速简便且高效准确的红木树种识别方法.通过采集红木家具表面木材花纹,提取木材纹理图像构建数据集,采用稳定扩散结合控制网络技术生成额外图像扩充数据集,同时进行数据增强处理,构建ResNet50_DTPE模型,并与当前主流的卷积神经网络模型ConvNeXt和EfficientNetV2进行比较.结果显示,数据集扩充和增强提高图像数量同时增强图像质量,模型的识别准确率、召回率和F1分数均呈现上升趋势,对5种红木树种识别准确率均在90%以上;将DTPE集成到ResNet50末端,同时保持ResNet50原有网络结构,验证集最高准确率达到99.8%;通过消融试验对比验证,改进的ResNet50_DTPE模型在运行速率和识别准确率上有显著提升,训练时间为11.0 h,推理时间为24.0 ms/张,最高识别准确率为99.8%.结果验证了ResNet50_DTPE模型对5种红木树种图像识别的有效性,为木材树种识别提供了一种新的思路和解决方案.

In order to identify five Hongmu species,Pterocarpus erinaceus Poir.,Pterocarpus macrocarpus Kurz,Dalbergia cochinchinensis Pierre,Dalbergia latifolia Roxb.and Dalbergia retusa Hemsl.,a new recognition model for wood texture was proposed.This model aims to provide a fast,simple,efficient and accurate method,based on the improved attention mechanism algorithm of residual network(ResNet50)and a detailed texture perception engine(DTPE).The images of wood patterns on the surface of Hongmu furniture were photographed,and the wood texture images were extracted to build the dataset.Stable diffusion combined with control network technology was used to generate expanded image dataset.At the same time,data enhancement processing was performed to construct ResNet50_DTPE model,which was then compared with the existing ConvNeXt and EfficientNetV2 network models.The results indicate that dataset expansion and enhancement increase the number of images and enhance the image quality,positively impacting the model performance.DTPE is integrated at the end of ResNet50 to maintain the original network structure of ResNet50,resulting in high recognition accuracy.The ablation test results verified the effectiveness of ResNet50_DTPE model.The training time was 11.0 hours,the inference time was 24.0 ms/sheet,and the highest recognition accuracy was 99.8%,indicating that ResNet50_DTPE is feasible for identifying the five Hongmu species.

田朔;刘美怡;杨东;李文珠;徐耀飞

浙江农林大学化学与材料工程学院,浙江 杭州 311300浙江农林大学化学与材料工程学院,浙江 杭州 311300||浙江省木雕红木家具产品质量检验中心,浙江东阳 322100浙江裕华木业股份有限公司,浙江嘉善 314100

林学

红木树种识别木材纹理图像残差网络详细纹理感知引擎

Hongmuspecies identificationimage of wood textureresidual network(ResNet)detailed texture perception engine(DTPE)

《木材科学与技术》 2024 (005)

77-84 / 8

浙江省基础公益研发计划项目"基于红外光谱技术和识别模型的红木识别与鉴定研究"(GC20C160001);嘉善县科技计划项目"基于计算机图像学的木材识别系统与木制品鉴评体系构建"(2022A33).

10.12326/j.2096-9694.2024009

评论