| 注册
首页|期刊导航|人民黄河|基于TimeGAN和CNN-BiLSTM-Attention的大坝变形预测混合模型

基于TimeGAN和CNN-BiLSTM-Attention的大坝变形预测混合模型

原佳帆 李丹杨 李佳霖 秦学 毛鹏

人民黄河2024,Vol.46Issue(12):127-130,143,5.
人民黄河2024,Vol.46Issue(12):127-130,143,5.DOI:10.3969/j.issn.1000-1379.2024.12.021

基于TimeGAN和CNN-BiLSTM-Attention的大坝变形预测混合模型

Hybrid Model for Dam Deformation Prediction Based on TimeGAN and CNN-BiLSTM-Attention

原佳帆 1李丹杨 1李佳霖 1秦学 1毛鹏2

作者信息

  • 1. 贵州大学 大数据与信息工程学院,贵州 贵阳 550000
  • 2. 中国电建集团 贵阳勘测设计研究院有限公司,贵州 贵阳 550000
  • 折叠

摘要

Abstract

Deep learning models based on historical data often require a large dataset spanning several years.In order to address the issue of insufficient data,a hybrid model for predicting the deformation of concrete face rockfill dams was proposed,which combined Time Series Generative Adversarial Networks(TimeGAN)with CNN-BiLSTM-Attention.Firstly,it used TimeGAN to generate virtual data to expand the sparse dataset.Then,convolutional neural networks(CNN)were used to extract nonlinear local features from dam sensor data,and BiLSTM was used to capture bidirectional time series features.Finally,the attention mechanism was introduced to automatically fit the weight alloca-tion of information features extracted by the BiLSTM layer,and the final prediction result was output through the fully connected layer.Taking a concrete face slab dam in Bijie City of Guizhou Province as an example,it verified the applicability of the hybrid model in practical engi-neering.It established four basic models of Long Short Term Memory Network(LSTM),CNN-LSTM,CNN-LSTM-Attention and CNN-BiL-STM-Attention,and introduced TimeGAN separately to compare the prediction accuracy of each model.The results show that the mixed model based on TimeGAN and CNN-BiLSTM-Attention has significantly better fitting performance than other models,and its predicted values are closest to the monitored values.Compared to traditional single LSTM models,its EMS,ERMS and EMA are reduced by 71%,49%and 45%respectively,and R2 is improved by 20%.

关键词

TimeGAN/CNN/BiLSTM/Attention/混凝土面板堆石坝/变形预测

Key words

TimeGAN/CNN/BiLSTM/Attention/concrete face rockfill dam/deformation prediction

分类

建筑与水利

引用本文复制引用

原佳帆,李丹杨,李佳霖,秦学,毛鹏..基于TimeGAN和CNN-BiLSTM-Attention的大坝变形预测混合模型[J].人民黄河,2024,46(12):127-130,143,5.

基金项目

贵州省科技计划项目(黔科合支撑[2023]一般251) (黔科合支撑[2023]一般251)

贵州省基础研究计划(自然科学)青年引导项目(黔科合基础[2024]青年095) (自然科学)

人民黄河

OA北大核心CSTPCD

1000-1379

访问量0
|
下载量0
段落导航相关论文