| 注册
首页|期刊导航|肿瘤预防与治疗|基于RNNU-Net深度学习模型的肺癌CT图像心脏自动勾画研究及临床可行性评估

基于RNNU-Net深度学习模型的肺癌CT图像心脏自动勾画研究及临床可行性评估

许亚萍 孙历 张孝文 修玉涛 文晓博 崔文举 刘泉源

肿瘤预防与治疗2024,Vol.37Issue(11):960-969,10.
肿瘤预防与治疗2024,Vol.37Issue(11):960-969,10.DOI:10.3969/j.issn.1674-0904.2024.11.006

基于RNNU-Net深度学习模型的肺癌CT图像心脏自动勾画研究及临床可行性评估

Study and Clinical Feasibility Evaluation of Automatic Heart Segmentation in Lung Cancer CT Images Based on RNNU-Net Deep Learning Model

许亚萍 1孙历 2张孝文 1修玉涛 2文晓博 2崔文举 1刘泉源1

作者信息

  • 1. 256500 山东滨州,滨州医学院附属医院放射科
  • 2. 266071 山东青岛,青岛大学青岛肿瘤研究院
  • 折叠

摘要

Abstract

Objective:This study aims to assess the accuracy and clinical feasibility of automatic heart segmentation on CT images of lung cancer using the RNNU-Net deep learning model.Methods:CT images from 75 lung cancer patients was collected.Heart label maps were manually delineated by experts to create the dataset.The dataset was randomly classified into a training set(n=51),a validation set(n=7)and a test set(n=17).Data augmentation techniques were applied to expand the training set.Quantitative evaluation metrics including Dice similarity coefficient(DSC),Jaccard similarity coeffi-cient(JSC),positive predictive value(PPV),sensitivity(SE),Hausdorff distance(HD),relative volume difference(RVD),and volume overlap error(VOE)were used to assess the model.The heart segmentation results of the U-Net model were compared to those of junior practitioners.Results:the evaluation indices of the test set using the RNNU-Net deep learning model were as follows:DSC(91.06%±10.94%),JSC(85.09%±15.10%),PPV(96.01%±9.35%),SE(88.21%±13.42%),HD(4.66±1.26),RVD(12.45%±18.70%)and VOE(13.48±20.11).Statistical analysis revealed significant differences between the evaluation indices of the RNNU-Net model and those of junior doctors,with the RNNU-Net model demonstrating superior performance.Scatter plot and box plot results indicated that the RNNU-Net model had fewer zero values compared to the junior doctors.Qualitative evaluation demonstrated that the RNNU-Net deep learning model accurately segmented the inferior vena cava and the heart,resulting in smoother boundaries and decreasing missed segmentation.Furthermore,the RNNU-Net model effectively reduced over-segmentation in cases of invasion around the heart,compared to the U-Net model.Conclusion:The deep learning mod-el based on RNNU-Net exhibits advantages in the automatic delineation of the heart on CT images of lung cancer.It reduces the time required for clinical delineation and effectively compensates for missed delineation.

关键词

深度学习/心脏/自动勾画/U-Net

Key words

Deep learning/Heart/Auto-segmentation/U-Net

分类

医药卫生

引用本文复制引用

许亚萍,孙历,张孝文,修玉涛,文晓博,崔文举,刘泉源..基于RNNU-Net深度学习模型的肺癌CT图像心脏自动勾画研究及临床可行性评估[J].肿瘤预防与治疗,2024,37(11):960-969,10.

肿瘤预防与治疗

OACSTPCD

1674-0904

访问量0
|
下载量0
段落导航相关论文