基于RNNU-Net深度学习模型的肺癌CT图像心脏自动勾画研究及临床可行性评估OACSTPCD
Study and Clinical Feasibility Evaluation of Automatic Heart Segmentation in Lung Cancer CT Images Based on RNNU-Net Deep Learning Model
目的:探讨基于RNNU-Net深度学习模型在肺癌CT图像上自动勾画心脏的准确率和临床可行性.方法:选取75例肺癌患者的CT图,并由相关从业人员勾画心脏标签图,制作成数据集.将数据集随机分为训练集(n=51)、验证集(n=7)和测试集(n=17),并对训练集进行数据扩充,使用戴斯相似度系数(Dice similarity coefficient,DSC)、杰卡德相似度系数(Jaccard similarity coefficient,JSC)、阳性预测率(positive predictive value,PPV)、灵敏度(sensitivity,SE)、豪斯多夫距离(Hausdorf distance,HD)、相对体积差(relative volume difference,RVD)、体积重叠误差(volumetric overlap error,VOE)对模型进行定量评价,并对比U-Net模型和低年资从业人员对心脏的勾画结果.结果:基于RNNU-Net深度学习模型的测试集DSC、JSC、PPV、SE、HD、RVD、VOE评价指标值分别为:91.06%±10.94%、85.09%±15.10%、96.01%±9.35%、88.21%±13.42%、4.66±1.26、12.45%±18.70%、13.48±20.11.RNNU-Net的大多数评价指标与低年资从业人员之间的差异有统计学意义,且RNNU-Net模型表现出更优的效果,同时散点图与箱型图结果显示,相较于低年资从业人员勾画结果,RNNU-Net模型有着更少的0值.定性评价结果显示RNNU-Net深度学习模型准确地划分了下腔静脉与心脏,边界更加平滑,且缓解了漏勾现象,同时,在心脏周围存在肿瘤侵犯的情况下有效缓解了 U-Net模型的过分割现象.结论:基于RNNU-Net的深度学习模型在肺癌CT图像上的心脏自动勾画上存在一定的优势,可以缩短临床勾画时间,并有效弥补漏勾画等现象.
Objective:This study aims to assess the accuracy and clinical feasibility of automatic heart segmentation on CT images of lung cancer using the RNNU-Net deep learning model.Methods:CT images from 75 lung cancer patients was collected.Heart label maps were manually delineated by experts to create the dataset.The dataset was randomly classified into a training set(n=51),a validation set(n=7)and a test set(n=17).Data augmentation techniques were applied to expand the training set.Quantitative evaluation metrics including Dice similarity coefficient(DSC),Jaccard similarity coeffi-cient(JSC),positive predictive value(PPV),sensitivity(SE),Hausdorff distance(HD),relative volume difference(RVD),and volume overlap error(VOE)were used to assess the model.The heart segmentation results of the U-Net model were compared to those of junior practitioners.Results:the evaluation indices of the test set using the RNNU-Net deep learning model were as follows:DSC(91.06%±10.94%),JSC(85.09%±15.10%),PPV(96.01%±9.35%),SE(88.21%±13.42%),HD(4.66±1.26),RVD(12.45%±18.70%)and VOE(13.48±20.11).Statistical analysis revealed significant differences between the evaluation indices of the RNNU-Net model and those of junior doctors,with the RNNU-Net model demonstrating superior performance.Scatter plot and box plot results indicated that the RNNU-Net model had fewer zero values compared to the junior doctors.Qualitative evaluation demonstrated that the RNNU-Net deep learning model accurately segmented the inferior vena cava and the heart,resulting in smoother boundaries and decreasing missed segmentation.Furthermore,the RNNU-Net model effectively reduced over-segmentation in cases of invasion around the heart,compared to the U-Net model.Conclusion:The deep learning mod-el based on RNNU-Net exhibits advantages in the automatic delineation of the heart on CT images of lung cancer.It reduces the time required for clinical delineation and effectively compensates for missed delineation.
许亚萍;孙历;张孝文;修玉涛;文晓博;崔文举;刘泉源
256500 山东滨州,滨州医学院附属医院放射科266071 山东青岛,青岛大学青岛肿瘤研究院256500 山东滨州,滨州医学院附属医院放射科266071 山东青岛,青岛大学青岛肿瘤研究院266071 山东青岛,青岛大学青岛肿瘤研究院256500 山东滨州,滨州医学院附属医院放射科256500 山东滨州,滨州医学院附属医院放射科
临床医学
深度学习心脏自动勾画U-Net
Deep learningHeartAuto-segmentationU-Net
《肿瘤预防与治疗》 2024 (11)
960-969,10
评论